
Learning to Construct Knowledge Bases from

the World Wide Web ?

Mark Craven a Dan DiPasquo a Dayne Freitag b

Andrew McCallum a,b Tom Mitchell a Kamal Nigam a

Seán Slattery a

aSchool of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA, 15213-3891, USA

bJust Research, 4616 Henry Street, Pittsburgh, PA, 15213, USA

Abstract

The World Wide Web is a vast source of information accessible to computers, but
understandable only to humans. The goal of the research described here is to auto-
matically create a computer understandable knowledge base whose content mirrors
that of the World Wide Web. Such a knowledge base would enable much more
effective retrieval of Web information, and promote new uses of the Web to sup-
port knowledge-based inference and problem solving. Our approach is to develop a
trainable information extraction system that takes two inputs. The first is an ontol-
ogy that defines the classes (e.g., company, person, employee, product) and relations
(e.g., employed by, produced by) of interest when creating the knowledge base. The
second is a set of training data consisting of labeled regions of hypertext that repre-
sent instances of these classes and relations. Given these inputs, the system learns
to extract information from other pages and hyperlinks on the Web. This article
describes our general approach, several machine learning algorithms for this task,
and promising initial results with a prototype system that has created a knowledge
base describing university people, courses, and research projects.

? This research has been supported in part by the DARPA HPKB program under
research contract F30602-97-1-0215. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of DARPA or the U.S. government.

Preprint submitted to Artificial Intelligence 1 November 1999

1 The Opportunity

The rise of the World Wide Web has made it possible for your workstation to
retrieve over 350,000,000 Web pages for your personal perusal. The Web has
already become one of the largest and most diverse sources of information on
the planet, and many expect it to grow into the world’s primary knowledge
resource over the next decade.

The research described here is motivated by a simple observation: although
your workstation can currently retrieve over 350,000,000 Web pages, it cur-
rently understands none of these Web pages. The goal of our Web→KB re-
search project is to automatically create a computer-understandable knowl-
edge base whose content mirrors that of the World Wide Web. Such a “World
Wide Knowledge Base” would consist of computer understandable assertions
in symbolic, probabilistic form (e.g., employed by(mark craven, carnegie mellon univ),
probability=.99). We expect such a world wide knowledge base would have
many uses. At a minimum, it would allow much more effective information
retrieval by supporting queries such as “find all universities within 20 miles
of Pittsburgh that offer evening courses on Java programming.” Going a step
further, it would enable new uses of the Web to support knowledge-based infer-
ence and problem solving. For example, it would provide the knowledge base
needed by a software travel agent that might handle requests such as “make me
hotel and flight arrangements for the upcoming ACM conference.” Notice that
information about the ACM conference, nearby hotels, and flights is already
available in human-readable form, spread across multiple text pages on the
Web. A knowledge base that makes this information computer-understandable
would support a variety of intelligent knowledge-based agents.

How might we construct and maintain such a world wide knowledge base? The
thesis explored in this article is that one can develop such a knowledge base by
(1) using machine learning to create information extraction methods for each
of the desired types of knowledge, then (2) applying these learned information
extraction methods to extract symbolic, probabilistic statements directly from
Web hypertext. Each assertion in the knowledge base can therefore carry with
it a justification, in terms of the Web sources and information extraction
method, that provide its evidential support. As the Web evolves over time, the
knowledge base can be automatically updated to reflect its changing content.

This article explores the above thesis by proposing and evaluating several
learning algorithms relevant to this information extraction task, and by pre-
senting the prototype Web→KB system which has successfully built a knowl-
edge base containing several thousand assertions about computer science de-
partments using these learned information extractors.

Fundamentals of CS Home Page

 Instructors:
 Jim
Tom

Jim’s Home PageWeb Pages:

Ontology:

KB Instances:

entity
home_page:
home_page_title:

other activity person
department_of:
projects_of:
courses_taught_by:
name_of:

department
members_of_department:

student
advisors_of:
courses_TAed_by:

stafffaculty
projects_led_by:
students_of:

course
instructors_of:
TAs_of:

research_project
members_of_project:
Pls_of:

jim

My research includes
 Intelligent web agents

 Human computer interaction

I teach several courses:
 Fundamentals of CS
 Intro to AI

fundamentals−of−CS
instructors_of: jim, tom
home_page:

courses_taught_by: fundamentals−of−CS
 introduction−to−AI
home_page:

Fig. 1. An overview of the Web→KB system. The top part of the figure shows an
ontology that defines the classes and relations of interest. Each partial box repre-
sents a class, and the arrows indicate specialization relationships. The other defined
relations for each class are listed inside of its corresponding box. The bottom part
shows two Web pages identified as training examples of the classes course and fac-
ulty. Together,these two pages also constitute a training example for the relations
instructors of and courses taught by. Given the ontology and a set of training data,
Web→KB learns to interpret additional Web pages and hyperlinks to add new
instances to the knowledge base, such as those shown in the middle of the figure.
These instances are represented by dashed partial boxes. The dashed lines show the
relationships between the instances and their Web sources.

We begin by briefly surveying the capabilities of the Web→KB system in the
next section. The subsequent section considers in detail the representational
assumptions underlying our approach. The remaining sections present our
experimental testbed, several learning algorithms and experimental results for
the various information extraction tasks, related work, and conclusions.

2 Overview of the Web→KB System

The Web→KB system is first trained to extract information of the desired
types, and is then allowed to browse new Web sites in order to automatically
populate a knowledge base with new assertions. When training this system,
the user must provide two inputs:

(1) A specification of the classes and relations of interest. This is the ontology
that defines the vocabulary for the target knowledge base. An example
of such an ontology is provided in the top half of Figure 1. This par-
ticular ontology defines a hierarchy of classes including person, student,
research project, course, etc. It also defines relations between these classes
such as advisors of (which relates an instance of a student to the instances
of faculty who are the advisors of the given student). This ontology, and
optionally instances of some of the classes and relations, constitutes the
initial version of the knowledge base.

(2) Training examples that describe instances of the ontology classes and
relations. For example, the two Web pages shown at the bottom of Figure
1 represent instances of course and faculty classes. Furthermore, this pair
of pages represents an instance of the relation courses taught by (i.e., the
courses taught by jim includes fundamentals-of-CS).

Given such an ontology and a set of training examples, the Web→KB system
learns general procedures for extracting new instances of these classes and
relations from the Web. In the current prototype, this is accomplished by
learning to classify arbitrary Web pages and hyperlink paths according to
the classes and relations defined by the ontology. When exploring the Web,
the Web→KB system starts from a given input URL and explores pages
using a breadth-first search to follow links. Each explored page is examined,
using learned class descriptions, to see if it represents a member of one of
the ontology classes. If a page is determined to be a class member, an entity
representing that page is placed into the knowledge base, and the ontology
relations for that page are instantiated based on learned rules and the local
structure of the Web around the page. If a page is not a class member, the
search is truncated, and links from this page are not followed.

In one such crawling experiment the system was given a training set of ap-
proximately 8,000 Web pages and 1,400 Web-page pairs taken from the com-
puter science department Web sites at four universities (Cornell, University
of Texas at Austin, University of Washington, and University of Wisconsin).
These training examples were hand labeled according to the ontology shown
in Figure 1. The system was then allowed to explore the Web site of a fifth
computer science department (at Carnegie Mellon University), and to add new
knowledge base entries based on information extracted from this new Web site.

david−garlan
generalizations: faculty
name: "David Garlan"
courses_taught_by: cmu−cs−15−675−architectures−of−software−systems
projects_of: architectural−mismatch
 cmu−cs−composable−software−systems−home−page
 able−project
department_of: school−of−computer−science
home_page: "http://www.cs.cmu.edu/afs/cs/user/garlan/www/home.html"

able−project
generalizations: research_project
members_of_project: bridget−spitznagel
 david−garlan
 ralph−melton
 heather−richter
home_page: "http://www.cs.cmu.edu/afs/cs/project/able/www/index.html"

Fig. 2. Two of the entities automatically extracted from the CMU computer science
department Web site after training on four other university computer science sites.
These entities were added as new instances of faculty and project to the knowledge
base shown in Figure 1. The identifiers used to reference entities (e.g., david-garlan
and able-project) are automatically generated from the titles of the pages from which
the entities are extracted.

research

student faculty person project course department Overall

Extracted 180 66 246 99 28 1 374

Correct 130 28 194 72 25 1 256

Accuracy 72% 42% 79% 73% 89% 100% 68%
Table 1
Class instance recogni tion accuracy when exploring CMU computer science de-
partment Web site, after training on computer science departments at four other
universities.

Two new instances added by the system to its knowledge base, as a result
of browsing this new university Web site, are shown in Figure 2. The top
instance describes a new faculty added to the knowledge base, as a result
of examining a Web page that the system classified into this category. As a
result, the system created the new faculty instance in the knowledge base,
and extracted several relations involving this instance. For example, it de-
termined (correctly) the name of this faculty member, a course taught by
the faculty member, and three instances of the projects of relation for this
faculty member: architectural-mismatch, cmu-cs-composable-software-systems-
home-page, and able-project. These three projects are themselves instances of
the research project class, extracted from other Web pages. The description
of one of these, the able-project, is shown at the bottom of the figure. The
identifiers used to reference these instances are automatically generated from
the titles of the pages from which the instances are extracted.

How accurate is the system in extracting such information? In this experiment,
the system visited 2722 Web pages at the new Carnegie Mellon site, and as

instructors of members of project department of Overall

Extracted 23 125 213 361

Correct 18 92 181 291

Accuracy 78% 74% 85% 81%
Table 2
Relation instance recognition accuracy when exploring CMU computer science de-
partment Web site, after training on computer science departments at four other
universities.

a result added 374 new class instances to its knowledge base. The fraction
of correctly extracted instances is summarized in Table 1. For example, this
table indicates that the system created 28 new knowledge base instances of the
class course. Of these 28 new instances, 25 in fact represented courses and the
other 3 did not. Its accuracy 1 in extracting relation instances is summarized
in a similar fashion in Table 2. Note that since we don’t have a labelling for
all the pages and relations at Carnegie Mellon, we have no way of calculating
coverage results for these tasks.

Figure 3 shows the information displayed by the system as it browses. Note
this display shows the Web page that is currently being visited (top right), and
the information extracted by the system from this Web page (middle left). The
interface also contains a control panel that allows the user to interact with the
system (top left), and to browse the growing knowledge base (bottom right).

3 Problem Formulation

As summarized in the previous section, the Web→KB system provides exper-
imental support for our thesis that a system can be trained to automatically
populate a knowledge base by browsing Web hypertext. Later sections describe
in detail the learning algorithms used by this Web→KB system. In this sec-
tion, we consider the precise problem formulation and the representational
assumptions that underlie our current approach.

To summarize, we are interested in the following general problem:

Given:
· a knowledge base consisting of an ontology defining the classes (e.g., per-

son) and relations (e.g., instructor of) of interest, and optionally, instances

1 Throughout the article, when we refer to accuracy on a per-class basis, it is
equivalent to the precision measure commonly used in the information-retrieval
community. Similarly, when we refer to coverage on a per-class basis, it is equivalent
to the recall measure.

Fig. 3. The Web interface to the Web→KB system. The upper left pane serves as a
control panel. The middle left pane describes the current activity of the Web→KB

system, and the lower left pane summarizes the session. The upper right pane shows
the page currently being processed, and the lower right pane provides a mechanism
for browsing the extracted knowledge base.

of some of these classes and relations,
· training examples from the Web that describe instances of these classes

and relations.
Determine:
· general procedures capable of extracting additional instances of these

classes and relations by browsing the rest of the Web.

Note that we do not necessarily extract new instances for all of the classes and

relations in the ontology. For example, our ontology may have a class country
and the initial knowledge base may include instances for all of the countries
in the world. In this case, since we already know all instances, we do not need
to learn procedures to recognize new ones.

To pursue the problem of learning to extract instances from the Web, we must
make some assumptions about the types of knowledge to be extracted from
the Web, and the way in which this knowledge is represented in hypertext on
the Web. These assumption are:

• Assumptions about how class instances are described on the Web. We as-
sume that each instance of an ontology class is represented by one or more
segments of hypertext on the Web. By segment of hypertext, we mean either
a single Web page, or a contiguous string of text within a Web page, or a
rooted graph of several Web pages linked by the directed edges of hyper-
links. For example, an instance of a person might be described by a single
page (the person’s home page), or by a reference to the person in a string
of text within an arbitrary Web page, or by a collection of interconnected
Web pages that jointly describe the person.
• Assumptions about how relation instances are described on the Web. Con-

sider an arbitrary instance R(A,B) of a relation R. We assume that each in-
stance of a relation is represented on the Web in one of three ways. First, the
instance R(A,B) may be represented by an undirected path of hyperlinks and
pages that connects the segment representing A to the segment representing
B. For example, the bottom of Figure 1 shows two hyperlinks that connect
the segment representing jim to the segment representing fundamentals-of-
CS. These hyperlinks represent the relation instructor of(fundamentals-of-CS,
jim). Second, the instance R(A,B) may alternatively be represented by a seg-
ment of text representing A that contains the segment that represents B.
For example, the relation instance courses taught by(jim, introduction-to-AI)
is represented in Figure 1 by the fact that Jim’s home page contains the
phrase “Intro to AI” in a particular context. Finally, the instance R(A,B)
may be represented by the fact that the hypertext segment for A satisfies
some learned model for relatedness to B. For example, we might extract the
instance research area of(jim, artificial-intelligence) by classifying Jim’s page
using a statistical model of the words typically found in pages describing
AI research.

Appendix A provides a more formal presentation of these assumptions. In
addition to these assumptions about the mapping between Web hypertext and
the ontology, we make several simplifying assumptions in our initial research
reported in this article. We plan to relax the following assumptions in the
future as our research progresses.

• We assume in this article that each class instance is represented by a single

Web page (e.g., a person is represented by their home page). If an instance
happens to be described by multiple pages (e.g., if a person is described
by their home page plus a collection of neighboring pages describing their
publications, hobbies, etc.), our current system is trained to classify only
the primary home page as the description of the person, and to ignore
the neighboring affiliated pages. Alternatively, if an instance happens to
be described by a text fragment, our system does not currently create a
knowledge base instance for this. It does, however, extract certain relation
values from such text fragments (e.g., the name of the person, as illustrated
in Figure 1).
• We assume that each class instance is represented by a single segment of

hypertext. In other words, if the system encounters two unlinked Web pages
that represent instances of the same class, it creates two distinct instances of
this class in its knowledge base. While this assumption will often be satisfied
(e.g., two distinct personal home pages typically represent two distinct peo-
ple), there are clearly exceptions (e.g., there are many different Web pages
describing Elvis). Overcoming this “multiple Elvis problem” will require
methods that hypothesize equivalences between independently discovered
instances.
• We assume that all relations are two-place relations; that is, each relation

has only two arguments. We believe that it will be fairly easy to relax this
assumption.

Given this problem definition and our current set of assumptions, we view the
following as the three primary learning tasks that are involved in extracting
knowledge-base instances from the Web:

(1) Recognizing class instances by classifying bodies of hypertext. Section 5
looks at this problem, using both statistical and relational learning tech-
niques. It also examines how to relax our assumption about class instances
being represented by single Web pages.

(2) Recognizing relation instances by classifying chains of hyperlinks. Sec-
tion 6 investigates a relational learning solution to this problem.

(3) Recognizing class and relation instances by extracting small fields of text
from Web pages. Section 7 looks at this task and also uses a relational
learning approach.

4 Experimental Testbed

All experiments reported in this article are based on the ontology for computer
science departments shown in Figure 1. This ontology includes the classes de-
partment, faculty, staff, student, research project, and course. Our Web page
classification experiments also use the class other as the label for Web pages

that fall into none of these ontology classes. Each ontology class has an asso-
ciated set of slots, or relations, that exist among instances of this class and
other class instances in the ontology. For example, the course class has a slot
called instructors of that relates courses to people.

We assembled two data sets 2 for the experiments reported here. The first is
a set of pages and hyperlinks drawn from four CS departments: University of
Texas at Austin, Cornell University, University of Washington, and University
of Wisconsin. The second is a set of pages from numerous other computer
science departments. The four-department set includes 4,127 pages and 10,945
hyperlinks interconnecting them. The second set includes 4,120 additional
pages. The pages for most of the classes in our data set were collected using
“index” pages for our classes of interest (e.g., a page that has hyperlinks to all
of the students in a department), so labeling this data was straightforward.
After gathering this initial set of pages, we then collected every page that was
both (i) pointed to by a hyperlink in the initial set, and (ii) from the same
university as the page pointing to it. Most of the pages gathered in the second
step were labeled as other.

In addition to labeling pages, we also labeled relation instances. Each of
these relation instances consists of a pair of pages corresponding to the class
instances involved in the relation. For example, an instance of the instruc-
tors of relation consists of a course home page and a person home page. Our
data set of relation instances comprises 251 instructors of instances, 392 mem-
bers of project instances, and 748 members of department instances. These in-
stances are all from the four-department set.

Finally, we also labeled the name of the owner of pages in the person class.
This was done automatically by tagging any text fragment in the person’s
home page that matched the name as it appeared in the hyperlink pointing
to the page from the index page. The matching heuristics were conservative,
favoring precision over recall. Consequently, we believe that, although some
name occurrences were missed, there were no false positives. From 174 person
pages, this procedure yielded 525 distinct name occurrences. These instances
are all from the four-department set as well.

For all of the subsequent experiments in this article, we use a four-fold cross-
validation methodology to evaluate our algorithms. We conduct four runs in
which we train classifiers using data from three of the universities in our data
set (plus the second set of pages where applicable), and test the classifiers
using data from the remaining university. On each iteration we hold out a
different university for the test set.

2 These data sets are publicly available at http://www.cs.cmu.edu/~webkb/.

5 Learning to Recognize Class Instances

The first task for our system is to identify new instances of ontology classes
from the text sources on the Web. In this section we address the case in which
class instances are represented by Web pages; for example, a given instance of
the student class is represented by the student’s home page.

In the first part of this section we discuss a statistical bag–of–words approach
to classifying Web pages. We use this method along with three different repre-
sentations of pages. In the second part of this section we discuss learning first-
order rules to classify Web pages. An appealing aspect of the second approach
is that first-order rules can describe page classes using a rich description of the
local graph structure around the page. Finally, we evaluate the effectiveness
of combining the predictions made by all four of these classifiers.

5.1 Statistical Text Classification

In this section we consider classifying Web pages using statistical methods.
Our approach is similar to a growing body of work in text classification that
involves using a so-called bag of words or unigram representation. However, we
apply our method in novel ways that take advantage of the redundancy of hy-
pertext. Specifically, we train three independent classifiers which use different
representations for page classification:

• Full-Text: the words that occur anywhere in the page,
• Title/Heading: the words that occur in the title and HTML headings of the

page,
• Hyperlink: the words that occur in hyperlinks (i.e., the words in the anchor

text) that point to the page.

5.1.1 Approach

Our approach involves building a probabilistic model of each class using la-
beled training data, and then classifying newly seen pages by selecting the
class that is most probable given the evidence of words describing the new
page.

The method that we use for classifying Web pages is naive Bayes, with minor
modifications based on Kullback-Leibler Divergence. Given a document d to

classify, we calculate a score for each class c as follows:

Scorec(d) =
log Pr(c)

n
+

T∑
i=1

Pr(wi|d) log

(
Pr(wi|c)
Pr(wi|d)

)
(1)

where n is the number of words in d, T is the size of the vocabulary, and wi
is the ith word in the vocabulary. Pr(wi|c) thus represents the probability
that a randomly drawn word from a randomly drawn document in class c will
be the word wi. Pr(wi|d) represents the proportion of words in document d
that are word wi. The class predicted by the method for a given document
is simply the class with the greatest score. This method makes exactly the
same classifications as naive Bayes, but produces classification scores that are
less extreme. Below we explain naive Bayes; in Appendix B we detail our
modifications to it.

Naive Bayes

The probabilistic models we use ignore the sequence in which the words occur.
Such models are often called unigram or bag-of-words models because they are
based on statistics about single words in isolation.

Since the unigram model naively assumes that the presence of each word in
a document is conditionally independent of all other words in the the docu-
ment given its class, this approach, when used with Bayes Rule is often called
naive Bayes. The conditional independence assumption is clearly violated in
real-world data, however, despite these violations, empirically the naive Bayes
classifier does a good job of classifying text documents [37,67,27,42]. This ob-
servation is in part explained by the fact that classification estimation is only
a function of the sign (in binary cases) of the function estimation [17,24]. The
word independence assumption causes naive Bayes to give extreme (almost 0
or 1) class probability estimates. However, these estimates can still be poor
while classification accuracy remains high.

There are two common approaches to naive Bayes text classification. One, the
multi-variate Bernoulli model, is a Bayesian Network with no dependencies
between words and binary word counts; the document is considered to be
the “event” and each feature is a Boolean variable indicating the presence
or absence of a particular word in that document. The other approach, the
multinomial model, is a unigram language model with integer word counts; the
words are considered to “events” and the document is comprised of a collection
of these events. We use the second approach, since it has been found to out-
perform the first on several data sets [43].

We formulate naive Bayes for text classification as follows. Given a set of
classes C = {c1, ...cN} and a document consisting of n words, (w1, w2, ...wn),

we classify the document as a member of the class, c?, that is most probable,
given the words in the document:

c? = argmaxc Pr(c|w1, ..., wn). (2)

We transform Pr(c|w1, ..., wn) into a computable expression by applying Bayes
Rule (Eq. 3); rewriting the expression using the product rule and dropping
the denominator, since this term is a constant across all classes, (Eq. 4); and
assuming that words are independent of each other (Eq. 5).

Pr(c|w1, ..., wn)=
Pr(c) Pr(w1, ..., wn|c)

Pr(w1, ..., wn)
(3)

∝Pr(c)
n∏
i=1

Pr(wi|c, w1, ..., wi−1) (4)

'Pr(c)
n∏
i=1

Pr(wi|c) (5)

The modifications that transform this traditional formulation of naive Bayes
into the form we use (shown in Equation 1) are described in Appendix B.

Estimating Word Probabilities

A key step in implementing naive Bayes is estimating the word probabili-
ties, Pr(wi|c). To make our probability estimates more robust with respect
to infrequently encountered words, we use a smoothing method to modify the
probabilities that would have been obtained by simple event counting. One
important effect of smoothing is that it avoids assigning probability values
of zero to words that do not occur in the training data for a particular class.
Since naive Bayes involves taking a product of word probabilities, a single zero
for a class would prevent that class from being the maximum even if there are
many other words that strongly indicate that class. Rather than smoothing
with the common Laplace Estimates (i.e., adding one to all the word counts
for a class), we use Witten-Bell smoothing [66], which we have found to per-
form better in some cases, particularly when the amount of training data in
each class differs dramatically. Witten-Bell differs from Laplace smoothing in
that it strength of the prior depends on the relationship between the number
of unique words and the total number of word occurrences in the training
data for the class; if most of the word occurences are unique words, the prior
is stronger, if words are often repeated, the prior is weaker. More precisely

Witten-Bell sets Pr(wi|C) as follows:

Pr(wi|c) =


N(wi,c)

Tc+
∑

j
N(wj ,c)

if N(wi, c) 6= 0

T
Tc+
∑

j
N(wj ,c)

1
T−Tc if N(wi, c) = 0

(6)

where N(wi, c) is the count of the number of times word wi occurs in the
training data for class c, Tc is the total number of unique words in class c,
and T is the total number of unique words across all classes. Note that if we
set T and Tc to zero, (and define 0/0 = 0), we obtain the standard maximum
likelihood estimates for Pr(wi|c).

Feature Selection

Another important implementation issue is deciding upon the vocabulary size
to be used for the problem domain. We have found empirically that we get
slightly more accurate classifications when using a restricted vocabulary size.
Thus we limit our vocabulary to 2000 words in all of our experiments. The
vocabulary is selected by ranking words according to their average mutual
information with respect to the class labels [14]. We write Wi for a random
variable indicating whether word wi is present or absent in a document, and
write vi ∈ {wi,¬wi} for the values it takes on. We write C for a random
variable taking values of all the class labels, c ∈ C. Then, average mutual
information is

I(C;Wi) =H(C)−H(C|Wi) (7)

=−
∑
c∈C

Pr(c) log(Pr(c))

−−
∑

vi∈{wi,¬wi}
Pr(vi)

∑
c∈C

Pr(c|vi) log(Pr(c|vi))

=
∑

vi∈{wi,¬wi}

∑
c∈C

Pr(c, vi) log

(
Pr(c, vi)

Pr(c) Pr(vi)

)
(8)

This feature selection method has been found to perform best among sev-
eral alternatives [67], and has been used in many text classification studies
[27,31,32,48,42].

5.1.2 Experimental Evaluation

We evaluate our method using the data sets and cross-validation methodology
described in Section 4. On each iteration of the cross-validation run, we train
a classifier for each of the page representations described at the beginning of

Actual

co
ur

se

st
u
d
en

t

fa
cu

lt
y

st
aff

re
se

ar
ch

pr
oj

ec
t

de
pa

rt
m

en
t

ot
he

r

Predicted Accuracy

course 202 17 0 0 1 0 552 26.2

student 0 421 14 17 2 0 519 43.3

faculty 5 56 118 16 3 0 264 17.9

staff 0 15 1 4 0 0 45 6.2

research project 8 9 10 5 62 0 384 13.0

department 10 8 3 1 5 4 209 1.7

other 19 32 7 3 12 0 1064 93.6

Coverage 82.8 75.4 77.1 8.7 72.9 100.0 35.0
Table 3
A confusion matrix showing the results of classifying Web pages using the full-text
classifier. Results are combined across all of the four-university test runs. The overall
coverage and accuracy are also shown.

this section: full-text, title/heading, and hyperlink. Table 3 shows the resulting
confusion matrix (summed over the four test sets) for the full-text classifiers.
Each column of the matrix represents one class and shows how the instances
of this class are classified. Each row represents the instances that are predicted
to belong to a given class, and shows the true classes of these instances. This
table illustrates several interesting results. First, note that for most classes,
coverage is quite high. For example, 83% of the course and 77% of the faculty
instances are correctly classified. The notable exception to this trend is the
other class; only 35% of the instances belonging to this class are correctly
classified. We discuss this result in more detail below. A second interesting
result is that many of the remaining mistakes made by the classifiers involve
confusing different subclasses of person. For example, although only 9% of
the staff instances are correctly assigned to the staff category, 80% of them are
correct at the superclass level of person. As this result suggests, not all mistakes
are equally harmful; even when we fail to correctly classify an instance into one
of the leaf classes in our ontology, we can still make many correct inferences
about the instance if we correctly assign it to a more general class.

The low level of classification accuracy for the other class is largely explained
by the nature of this class. Recall from Section 4 that the instances of this

class were collected by gathering pages that were one hyperlink away from the
instances in the other six classes. For this reason, many of the instances of the
other class have content, and hence word statistics, very similar to instances
in one of the “core” classes. For example, whereas the home page for a course
will belong to the course class, “secondary” pages for the course, such as a
page describing reading assignments, will belong to the other class. Although
the content of many of the pages in the other class might suggest that they
properly belong in one of the core classes, our motivation for not including
them in these classes is the following. When our system is browsing the Web
and adding new instances to the knowledge base, we want to ensure that we
do not add multiple instances that correspond to the same real-world object.
For example, we should not add two new instances to the knowledge base
when we encounter a course home page and its secondary page listing the
reading assignments. Because of this requirement, we have framed our page
classification task as one of correctly recognizing the “primary” pages for the
classes of interest. As Table 3 indicates, this is a very difficult task, but as we
will show shortly, by combining several sources of evidence for each page, it is
one we can perform with high accuracy.

One way to obtain insight into the learned classifiers is to ask which words
contribute most highly to the quantity Scorec(d) for each class. To measure
this, we used one of our training sets (consisting of data from three of the four
universities) to calculate

Pr(wi|c) log

(
Pr(wi|c)
Pr(wi|¬c)

)
(9)

for each word wi and class c. Figure 4 shows the ten words for each class that
have the greatest value of this weighted log-odds ratio. For space reasons, we
do not show the words for the staff class. As the table illustrates, most of the
highly weighted words are intuitively prototypical for their class. The excep-
tions to this generalization are mostly from the other class which represents
an extremely diverse set of pages.

Another interesting result illustrated by this table is that many words which
are conventionally included in stop lists 3 are highly weighted by our models.
For example, the words my, me, and am are typical stop-list words but they
are among the top ten words for the student class. Although these are common
words, they are clearly predictive of the student class since first-person pro-
nouns and verb conjugations do not appear frequently on pages in the other

3 A stop list is a set of words that are commonly removed from documents before
they are processed by an information-retrieval or text-classification system. There
are standard stop lists which include words generally thought to convey little infor-
mation about the document topic.

student

my 0.0247

page 0.0109

home 0.0104

am 0.0085

university 0.0061

computer 0.0060

science 0.0059

me 0.0058

at 0.0049

here 0.0046

faculty

DDDD 0.0138

of 0.0113

and 0.0109

professor 0.0088

computer 0.0073

research 0.0060

science 0.0057

university 0.0049

DDD 0.0042

systems 0.0042

course

course 0.0151

DD:DD 0.0130

homework 0.0106

will 0.0088

D 0.0080

assignments 0.0079

class 0.0073

hours 0.0059

assignment 0.0058

due 0.0058

research project

group 0.0060

project 0.0049

research 0.0049

of 0.0030

laboratory 0.0029

systems 0.0028

and 0.0027

our 0.0026

system 0.0024

projects 0.0020

department

department 0.0179

science 0.0153

computer 0.0111

faculty 0.0070

information 0.0069

undergraduate 0.0058

graduate 0.0047

staff 0.0045

server 0.0042

courses 0.0042

other

D 0.0374

DD 0.0246

the 0.0153

eros 0.0010

hplayD 0.0097

uDDb 0.0067

to 0.0064

bluto 0.0052

gt 0.0050

that 0.0043

Table 4
The top ten most highly weighted words. For each class, the table shows the ten
words that are most highly weighted by one of our learned full-text models. The
weights shown represent the weighted log-odds ratio of the words given the class.
The symbol D is used to represent an arbitrary digit. For example, the top word
shown for the faculty class, DDDD, represents any four-digit token (such as that
occurring in a phone number).

classes. This result suggests that it is advantageous to select a vocabulary in
a domain specific way (as we did using mutual information), instead of using
a general purpose stop list.

Table 3 shows the results when we assign each page to the class with the high-
est score. One approach to improving classification accuracy is to limit the

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

course
student
faculty

research_project
department

staff

Fig. 4. Accuracy/coverage tradeoff for full-text classifiers. Predictions within each
class are ordered according to their confidence. Each curve shows the behavior of
the classifier as a threshold on this confidence is varied. The x-axis represents the
percentage of pages of a given class that are correctly classified as belonging to the
class. The y-axis represents the percentage of pages assigned to a given class that
are actually members of that class.

predictions made by the classifiers to just those predictions in which they are
most confident. This is easily achieved with our method because the quantity
Scorec(d) calculated when classifying a page can be taken as a measure of
the confidence in the classification. By setting a minimum threshold on this
confidence, we can select a point that sacrifices some coverage in order to ob-
tain increased accuracy. Given our goal of automatically extracting knowledge
base information from the Web, it is desirable to begin with a high-accuracy
classifier, even if we need to limit coverage to only, say, 10% of the 350,000,000
pages available on the Web.

The effect of trading off coverage for accuracy using our full-text classifiers is
shown in Figure 4. The horizontal axis on this plot represents coverage: the
percentage of pages of a given class that are correctly classified as belonging to
the class. The vertical axis represents accuracy: the percentage of pages classi-
fied into a given class that are actually members of that class. To understand
these results, consider, for example, the class student. As the results in Table 3
show, when the classifiers predict that a page belongs to the student class they
are correct 43% of the time. The rightmost point on the student curve in the
Table 4 corresponds to this point. As we raise the confidence threshold for
this class, however, the accuracy of our predictions rises. For example, at a

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

course
student
faculty

research_project
department

staff

Fig. 5. Accuracy/coverage tradeoff for hyperlink classifiers.

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

course
student
faculty

research_project
department

staff

Fig. 6. Accuracy/coverage tradeoff for title/heading classifiers.

coverage of 20%, accuracy reaches a level of 67%.

So far, we have discussed the results only for the full-text classifiers. Figures 5
and 6 show the accuracy/coverage curves for the hyperlink and title/heading
classifiers, respectively. As before, these curves show the aggregate results for

all four test sets in our cross-validation run.

As we discussed earlier, one of the aspects that distinguishes learning in hy-
pertext from learning in flat-text domains is that hypertext provides multiple,
somewhat independent sources of evidence for the meaning of a given piece of
text. As we hypothesized, the results in Figures 5 and 6 indicate that these
multiple sources of evidence can be potentially combined to make better pre-
dictions.

Consider, for example, the accuracy of the department predictions made by
the hyperlink classifiers. Whereas the full-text classifiers are only 9% accu-
rate at full coverage, the hyperlink classifiers are 57% accurate. Moreover, the
department accuracy/coverage curve for the hyperlink classifiers is uniformly
superior to the curve for the full-text classifiers. The reason for this differ-
ence in accuracy is that although our data set includes few department pages
from which to generalize, it includes many hyperlinks that point to department
pages. Thus the hyperlink classifiers have relatively large samples of data from
which to learn the word statistics of hyperlinks that point to department pages,
and similarly they have a fairly large number of hyperlinks on which to base
their prediction when classifying a page after training.

The title/heading classifiers also illustrate cases in which using a hypertext-
based representation for page classification can result in better predictive accu-
racy than simply using a flat-text representation. The title/heading classifiers’
curve for both the faculty and research project classes, for example, are better
than the corresponding curves for the full-text classifiers at coverage levels of
40% and less. One explanation for this result is that titles and headings pro-
vide something of a summary of a given page and thus tend to contain words
that are highly predictive of the page’s class.

5.2 First-Order Text Classification

As noted previously, the hypertext structure of the Web can be thought of as
a graph in which Web pages are the nodes of the graph and hyperlinks are
the edges. The methods for classifying Web pages that we discussed in the
previous sections consider the words in either a single node of the graph or in
a set of edges impinging on the same node. However, these methods do not
allow us to learn models that take into account such features as the pattern
of connectivity around a given page, or the words occurring in neighboring
pages. It might be profitable to learn, for example, a rule of the form “A page
is a course home page if it contains the words textbook and TA and is linked to
a page that contains the word assignment.” Rules of this type, that are able to
represent general characteristics of a graph, can be concisely represented using

a first-order representation. In this section, we consider the task of learning
to classify pages using a learner that is able to induce first-order rules.

5.2.1 Approach

The learning algorithm that we use in this section is Quinlan’s Foil algorithm
[52,53]. Foil is a greedy covering algorithm for learning function-free Horn
clauses 4 . Foil induces each Horn clause by beginning with an empty tail
and using a hill-climbing search to add literals to the tail until the clause
covers only (mostly) positive instances. The evaluation function used for the
hill-climbing search is an information-theoretic measure.

The representation we provide to the learning algorithm consists of the fol-
lowing background relations:

• has word(Page): This set of relations indicate which words occur in which
pages. Each boolean relation indicates the pages in which the word word
occurs. A distinct relation is used for each allowed word (e.g. has apple,
has study, etc.). The vocabulary for this set includes stemmed 5 words that
have at least 200 occurrences but that do not occur in more than 30% of the
training-set pages. These two constraints were selected with the intention
of assembling a vocabulary of reasonable size that would likely include the
words with the most discrimination power. We had between 592 and 729 of
these predicates in each of the cross-validation runs. Since we do not know
a priori which subsets of pages it will profitable to describe in learned rules,
we do not select the vocabulary using mutual information, as we did with
our statistical text classifiers.
• link to(Page, Page): This relation represents the hyperlinks that interconnect

the pages in the data set.

We apply Foil to learn a separate set of clauses for six of the seven classes
considered in the previous section 6 . We do not learn a description of the other
class, but instead treat it as a default class.

When classifying test instances, we calculate an associated measure of con-
fidence along with each prediction. We calculate these confidence values for
two reasons. First, we use them to resolve conflicting predictions from our six

4 We use the terms clause and rule interchangeably
5 Stemming refers to the process of heuristically reducing words to their root form.
For example the words compute, computers and computing would be stemmed to
the root comput.
6 There is a version of Foil specifically designed for multi-class problems such as
ours. We found, however, that the inductive bias of this version is not well suited
to our particular task.

independently learned rule sets. Second, we are interested in measuring how
the accuracy of our learned rule sets varies as we adjust their coverage.

We use the following procedure to calculate the confidence of each of our
predictions. First, we estimate the accuray of each of our learned clauses by
calculating an m-estimate [12] of the rule’s accuracy over the training exam-
ples. The m-estimate of a rule’s accuracy is defined as follows:

m−estimate accuracy =
nc +mp

n+m

where nc is the number of instances correctly classified by the rule, n is the
total number of instances classified by the rule, p is a prior estimate of the
rule’s accuracy, and m is a constant called the equivalent sample size which
determines how heavily p is weighted relative to the observed data. In our
experiments, we set m = 2 and we set p to the proportion of instances in the
training set that belong to the target class. We then use these scores to sort
the clauses in order of descending accuracy. 7 To integrate the predictions of
our six independently learned classifiers, we use the following procedure:

• If no classifier had a rule that matched the given page, then we predict other
with confidence 1.0.
• If only one classifier had a matching rule, then we predict the associated

class with confidence corresponding to the rule’s score. The other class is
predicted with confidence of one minus this score.
• If more than one classifier has a matching rule for the given example, then

we predict each class with confidence equal to the score of its best matching
rule divided by the total number of classifiers that had matching rules. The
other class is predicted with a confidence value that would make the total
confidence sum to one.

5.2.2 Experimental Evaluation

For the experiments reported here, we used release 6.4 of Foil with the default
settings. As with the experiments in Section 5.1, we use a four-fold cross-
validation methodology. The resulting accuracy/coverage plot for each class is
shown in Figure 7. Comparing these results to those in Figure 4, one can see
that although the first-order rules generally provide lower coverage than the
statistical classifiers, they provide superior accuracy for several classes.

Figure 8 shows three of the rules 8 learned by Foil in its various cross-

7 This change does not affect the classifications made by a learned set of clauses.
It affects only our confidence associated with each prediction.
8 Throughout the article, we use a Prolog-like syntax for learned rules. The symbol

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

course
student
faculty

research_project
department

staff

Fig. 7. Accuracy/coverage tradeoff for Foil page classifiers.

validation runs. The learned rule for course shown here illustrates the power
of a first-order representation. This rule classifies a page as the home page for
a course if it passes three groups of tests:

(1) The page has the word instructor, but doesn’t have the word good.
(2) The page contains a hyperlink to a page which does not contain any

hyperlinks to other pages.
(3) This linked page contains the word assign.

The sample rule learned for the student class comes from the cross-validation
run leaving pages from the University of Washington out of the training set.
Notice that this rule refers to a page (bound to the variable B) that has two
common first names on it (paul and jame, the stemmed version of james). This
rule (and similar rules learned with the other three training sets) illustrates
that Foil has learned to exploit “student directory” pages in order to identify
student home pages. For example, when Washington is the test set, all of the
correct applications of the rule bind B to a page entitled “Graduate Students
at UW CS&E”. Similarly, the faculty rule will not classify a page as faculty
unless there is a page containing the stemmed variant of faculty that points
into the given page.

:- represents the implication operator, with the head of the rule on the left side
of the operator and the body on the right side. Constants, such as the names of
our ontology classes and relations, start with lowercase letters. Variables start with
uppercase letters.

student(A) :- not(has data(A)), not(has comment(A)), link to(B,A), has jame(B),
has paul(B), not(has mail(B)).

Training Set: 147 Pos, 0 Neg; Test Set: 126 Pos, 5 Neg

faculty(A) :- has professor(A), has ph(A), link to(B,A), has faculti(B).
Training Set: 47 Pos, 0 Neg; Test Set: 18 Pos, 3 Neg

course(A) :- has instructor(A), not(has good(A)), link to(A,B), not(link to(B, 1)),
has assign(B).

Training Set: 31 Pos, 0 Neg; Test Set: 31 Pos, 3 Neg

Fig. 8. A few of the rules learned by Foil for classifying pages.

All three of these rules show how Web-page classification is different from
ordinary text classification in that neighboring pages may provide strong ev-
idence about the class of a given page. Learning methods which can use this
information effectively should perform better than standard techniques in this
domain.

5.3 Combining Learners

The previous experiments show that the best representation for page clas-
sification depends on the class. This observation suggests that it might be
profitable to combine the predictions made by our four classifiers. In this sec-
tion, we describe and evaluate a simple approach to this task.

5.3.1 Approach

The method that we employ for combining the predictions of our classifiers
takes advantage of the fact that each classifier produces a measure of con-
fidence along with each prediction. The method we use is a simple voting
scheme that uses confidence values as tie-breakers. That is, given the predic-
tions made by our four classifiers for a given Web page, we predict the class
that has a plurality of the votes made by the individual classifiers, if there is
one. If no class has a plurality, then we select the class associated with the
highest confidence prediction.

In order to ensure that the confidence measures output by our different classi-
fiers are comparable, we calibrate each classifier by inducing a mapping from
its output scores to the probability of a prediction being correct. We do this
by partitioning the scores produced by each classifier into bins and then mea-
suring the training-set accuracy of the scores that fall into each bin.

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

course
student
faculty

research_project
department

staff

Fig. 9. Accuracy/coverage tradeoff for combined classifiers with vocabulary size of
2000 words.

5.3.2 Experimental Evaluation

Figure 9 shows the accuracy/coverage curves for the voting predictors. By com-
paring this figure to the accuracy/coverage curves for the full-text classifiers
shown in Figure 4 one can see that, in general, more accurate predictions are
achieved by considering evidence other than full-text when classifying pages.
At high levels of coverage, the voting classifiers are more accurate than the
full-text classifiers for the course and department classes. Additionally, the re-
search project predictions made by the voting classifier are significantly more
accurate than the full-text predictions, although the coverage attained by the
voting classifier is not as good.

Although Figure 9 indicates that predictive accuracy is helped in some cases
by combining multiple classifiers, the results of this experiment are somewhat
disappointing. The accuracy/coverage curves for the voting classifiers are not
uniformly better than the corresponding curves of the constituent classifiers.
Ideally, we would like the accuracy/coverage curve for each class to be as good
or better than the best counterpart curve among the constituent classifiers.

We believe that the results shown in Figure 9 are disappointing because our
method for combining the predictions of multiple classifiers is overly simple.
Specifically, we believe that the method fails to accurately map classification
scores to estimated accuracies. Interestingly, we have observed that the voting
method performs much better when our statistical classifiers are limited to
very small vocabularies. Figure 10 shows the accuracy/coverage curves for

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

course
student
faculty

research_project
department

staff

Fig. 10. Accuracy/coverage tradeoff for combined classifiers with vocabulary size of
200 words.

voting when we use statistical classifiers trained with a vocabulary size of 200
words. In comparing this figure to our baseline full-text classifier (Figure 4),
one can see that the curves produced by the small-vocabulary voting method
are generally superior to the full-text classifier curves. Moreover, the small-
vocabulary voting classifiers achieved this result using constituent classifiers
that were not as accurate as their 2000-word vocabulary counterparts.

In future work, we plan to consider alternative combining functions that might
be better able to exploit the specialized areas of expertise exhibited by our
individual classifiers.

5.4 Identifying Multi-Page Segments

As discussed in Section 3, our representational assumption is that each class
instance in the knowledge base corresponds to some contiguous segment of
hypertext on the Web. This allows, for example, that a particular student
might be represented on the Web by a single Web page, or by a cluster of
interlinked Web pages centered around their home page.

In the experiments reported thus far, we have effectively made a simpler as-
sumption: that each instance is represented by a single Web page. In fact, in
labeling our training data, we encountered a variety of students (and instances
of other ontology classes) that were described by several interlinked Web pages

rather than a single page. In these cases we hand labeled the primary home
page as student, and labeled any interlinked pages associated with the same
student as other.

To remove this simplifying assumption we must develop methods for identify-
ing sets of interlinked pages that represent a single knowledge base instance.
In this section we present a set of hand-written heuristics that identify groups
of related pages and also identify the “primary” home page in the group. We
show here that classification accuracy in the previous sections is significantly
improved when these heuristics are used to group pages and to automatically
assign the label other to non-primary pages, to fit the assumption we made
while hand labeling the data.

5.4.1 Approach

Consider the Web pages of a prototypical faculty member. She might have a
main page (http://www.my.edu/user/jdoe/index.html), a page listing her
publications (http://www.my.edu/user/jdoe/pubs.html), and a page de-
scribing her research interests (http://www.my.edu/user/jdoe/work/research.
html). Our working assumption about entity-Web relationships indicates that
we should recognize that these pages correspond to a single entity, identify
the best representative page for that entity, classify that page as a faculty, and
classify the rest of the pages as other. We accomplish this by solving two sub-
tasks: grouping related pages together, and identifying the most representative
page of a group.

Spertus [64] identifies regularities in URL structure and naming, and presents
several heuristics for discovering page groupings and identifying representa-
tive home page. We use a similar, slightly expanded, approach. Although one
could imagine trying to learn these heuristics from examples, in the following
experiment we have instead provided these rules by hand.

The most obvious groupings that can be extracted from a URL are based on di-
rectory structure prefixes. Key directory components of a URL indicate a log-
ical grouping of Web pages into an entity. For example, given the URL http:

//www.my.edu/user/jdoe/research.html, we can deduce the existence of
an entity corresponding to the URL prefix http://www.my.edu/user/jdoe/,
because the keyword /user/ in the penultimate directory position typically in-
dicates the presence of a person entity in the directory space denoted by jdoe.
Other typical penultimate prefix markers are /faculty/, /people/, /home/,
and /projects/. Three ultimate prefix markers (in UNIX-style globbing pat-
tern) are /cs???/, /www/ and /∼*/, the first being a typical indicator of a
course, and the last being a typical indicator of the username of a person or or-
ganization. Our algorithm groups URLs by their longest directory prefix that

matches one of these given patterns. In the event that no pattern matches, the
entire directory prefix is used for the grouping. In our example above, the three
URLs would each have the entity prefix as http://www.my.edu/user/jdoe/,
and thus would be grouped together.

Applying these grouping heuristics results in sets of Web pages that are con-
jectured to represent a single ontology entity. From these sets, we identify the
single primary page that is most representative of that entity. Usually this
corresponds to the “home page” of the entity. Thus, we take any page that
has the filename pattern “index.html”, “home.html”, “homepage.html”, or
“cs???.html” and label it the primary page. Additionally, any page in which
the complete URL is the directory prefix, (for example, the URL http://

www.my.edu/user/jdoe/) or one in which the filename matches the directory
above it (as in http://www.my.edu/user/jdoe/jdoe.html) is also identi-
fied as a primary page. All pages that do not match any of these patterns
in a group, are classified automatically as other. In the event that no page
in a group matches any of these heuristics, the page with the highest (non-
other) classification confidence is labeled the primary page. In our example,
http://www.my.edu/user/jdoe/index.html would be classified as faculty
(assuming our classifier was correct), and the other pages would be classi-
fied as other regardless of the classifier prediction. A precise definition of the
algorithm used is given in Appendix C.

5.4.2 Experimental Evaluation

The impact of using the URL heuristics with the original full-text page clas-
sifier is summarized in Figure 11. Comparing these curves to Figure 4 one
can see the striking increase in accuracy for any given level of coverage across
all classes. Also note some degradation in total coverage. This occurs because
some pages that were previously correctly classified have been misidentified
as being “secondary” pages.

5.5 Section Summary

This section focused on the task of recognizing class instances by Web page
classification. We showed that, because hypertext provides much redundant
information, Web pages can be classified using several sources of information:
the full text of pages, the text in titles and headings, the text associated with
hyperlinks, text in neighboring pages, and the file organization represented
in URLs. Our experiments suggest that none of these approaches alone is
sufficient for recognizing instances of ontology classes with high accuracy. In
the experiments described in Section 2, we used both full-text classifiers and

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

course
student
faculty

research_project
department

staff

Fig. 11. Accuracy/coverage tradeoff for the full-text classifier after the application
of URL heuristics.

URL heuristics. We also showed in this section that one promising line of
research is to combine the predictions of multiple classifiers that use different
sources of evidence.

6 Learning to Recognize Relation Instances

In the previous section we discussed the task of learning to extract instances
of ontology classes from the Web. Our approach to this task assumed that the
class instances of interest are represented by whole Web pages or by clusters
of Web pages. In this section, we discuss the task of learning to recognize
relations of interest that exist among extracted class instances. The hypothe-
sis underlying our approach is that relations among class instances are often
represented by hyperlink paths in the Web. Thus, the task of learning to rec-
ognize instances of such relations involves inducing rules that characterize the
prototypical paths of the relation.

For example, an instance of the instructors of relation might be represented by
a hyperlink directly from the home page of a course to the home page of the
instructor, as described by the following rule:

instructors of(A, B) :- course(A), person(B), link to(A, B).

Here, the variables A and B represent Web pages, the literals course(B) and

person(A) represent the predicted classifications of the pages, and the literal
link to(A, B) tests for the existence of a hyperlink from page A to page B.

6.1 Problem Representation

Because this task involves discovering hyperlink paths of unknown and variable
size, we employ a learning method that uses a first-order representation for
its learned rules. Specifically, the algorithm we have developed for this task is
based on the Foil algorithm [52,53] which we used for page classification in
Section 5.2. We discuss our algorithm in more detail below.

The problem representation we use for this relation learning tasks consists of
the following background relations:

• class(Page) : For each class in the set of page classes considered in Section 5,
the class relation lists the pages that represent instances of class. For pages
in the training set, the instances of these relations are determined using the
actual classes of the pages. For pages in the test set, however, we use the
predicted page classes given by the classifiers discussed in Section 5. Since
the Web→KB system has access only to predicted page classes, our test
set conditions are representative of those the system faces.
• link to(Hyperlink, Page, Page) : This relation represents Web hyperlinks. For

a given hyperlink, the first argument of the relation specifies an identifier for
the hyperlink, the second argument specifies the page in which the hyperlink
is located, and the third argument indicates the page to which the hyperlink
points.
• has word(Hyperlink) : This set of relations indicates the words that are found

in the anchor (i.e., underlined) text of each hyperlink. The vocabulary for
this set of relations includes words that occur at least n times (we set n = 3
in our experiments) in the hyperlinks of the training set. Note that whereas
the has word relations used in Section 5.2 describes Web pages, the set used
here characterizes hyperlinks.
• all words capitalized(Hyperlink) : The instances of this relation are those hy-

perlinks in which all of the words in the anchor text start with a capital
letter.
• has alphanumeric word(Hyperlink) : The instances of this relation are those

hyperlinks which contain a word with both alphabetic and numeric charac-
ters (e.g., I teach CS760).
• has neighborhood word(Hyperlink) : This set of relations indicates the words

that are found in the “neighborhood” of each hyperlink. The neighborhood
of a hyperlink includes words in a single paragraph, list item, table entry,
title or heading in which the hyperlink is contained. The vocabulary for
this set of relations includes the 200 most frequently occurring words in

each training set, except for words on a stoplist.

We learn definitions for the following target relations from the data set de-
scribed in Section 4: members of project(Page, Page), instructors of course(Page,
Page), and department of person(Page, Page). In addition to the positive in-
stances for these relations, our training sets include approximately 300,000
negative examples. We form the set of negative training instances for each
target relation by enumerating each pair of non-other pages from the same
university that is not a positive instance of the target relation. This selection
criterion results in a sample of negative instances that is biased toward con-
nected pairs of pages and is small enough to allow reasonable learning times.
For the department of person relation, we augment the negative instances with
each person–department pair which is not a positive instance. These additional
negative instances preclude the learner from learning the trivial (and wrong)
rule that every person is a member of every department.

6.2 Learning Methods

As stated above, the algorithm we use for learning relation rules is similar to
Foil in that it uses a greedy covering approach to learn a set of Horn clauses.
The primary differences between our method and Foil are twofold. First,
unlike Foil our method does not simply use hill-climbing when searching for
the next clause to add to a concept definition. Second, our method uses a
different evaluation function for this search process. We discuss each of these
differences in turn.

As described in Section 5.2, Foil constructs clauses using a hill-climbing
search through a space of candidate literals. We have found that, for our
relation-learning tasks, such a hill-climbing strategy is unable to learn rules
for paths consisting of more than one hyperlink. The search process that our
method employs instead consists of two phases. In the first phase, the “path”
part of the clause is learned, and in the second phase, additional literals are
added to the clause using a hill-climbing search.

Our algorithm for constructing the path part of a clause is a variant of Richards
and Mooney’s relational pathfinding method [55]. This method is designed to
alleviate the basic weakness of hill-climbing search, namely that to learn good
definitions it is often necessary to take a step in the search space which does not
exhibit any immediate gain. The basic idea underlying relational pathfinding
is that a relational problem domain can be thought of as a directed graph in
which the nodes are the domain’s constants and the edges correspond to rela-
tions which hold among constants. The relational-pathfinding algorithm tries
to find a small number of prototypical paths in this graph that characterize

Input: training set of negative and uncovered positive instances

1. for each uncovered positive instance
2. find a path (up to bounded length) using the background relations
3. select the most common path prototype for which clause search hasn’t

yet failed
4. generalize the path into an initial clause
5. do hill-climbing to refine the clause
6. if hill-climbing fails to find an acceptable clause, backtrack to step 3.

Return: learned clause

Fig. 12. The procedure for learning a clause in our deterministic variant of relational
pathfinding.

expand subgraphs return path

p2

p5 p5 p6

p9

p2

p5

p9

p2 p3

p5 p6

p9p8p7

p1

p4

Fig. 13. Finding a path in the background relations. On the left is shown a graph
of constants linked by a single binary relation. This graph can be thought of as
representing Web pages connected by hyperlinks. Suppose the pair 〈p2, p9〉 is an un-
covered positive instance. Pathfinding proceeds by expanding the subgraphs around
the two constants until an intersection is detected, and then returning the path that
links the two constants.

the instances of the target relation.

Figure 12 provides an overview of our pathfinding procedure for learning a
single clause. This procedure is iterated until a complete definition has been
learned. The first step in the method is to find the shortest path of a bounded
length (when one exists) for each positive instance (of the target relation) that
has not been covered by a previously learned clause. This process, illustrated
in Figure 13 involves expanding a subgraph around each of the constants in
the instance. Each subgraph is expanded by finding all constants which can
be reached using an instance of one of the background relations to connect to
a constant at the frontier of the subgraph.

After finding such a path for each uncovered positive instance, the most com-

A

B

C

find path for each positive instance return most common path

p3

p6

p9

p2

p5

p1

p4

p7

p2

p5

p7 p9

Fig. 14. Finding the most common path for a set of positive instances. Given the
graph shown in Figure 13, suppose that the positive instances are 〈p1, p7〉, 〈p2,
p7〉, 〈p2, p9〉, and 〈p3, p9〉. Our algorithm finds the shortest path for each instance
and then returns the most common path prototype. In this example the first three
instances have the same path prototype, whereas the instance 〈p3, p9〉 has different
one (notice the direction of the hyperlinks). This path prototype is converted into
an initial clause.

mon path prototype is used for the initial clause. 9 A path prototype specifies
the number of hyperlinks in the path and their directions, but it does not
reference the particular pages and hyperlinks in any particular instance. The
notion of the most common path prototype is illustrated in Figure 14. The
initial clause is formed by replacing each constant in the path with a unique
variable. This clause is then further refined by a simple hill-climbing search,
such as that used in Foil. If the hill-climbing search fails to find an accept-
able clause, then the procedure backtracks by removing the last selected path
prototype from the list of candidates and then trying the next most common
prototype.

We further bias the search for clauses by initializing each one with the classes
of the pair of pages in the relation. For example, when learning clauses for the
target relation members of project(A, B), we initialize the tail of each clause
with the literal research project(A) and person(B). This bias takes advantage
of domain knowledge which is present in the ontology given to the Web→KB

system.

The second difference between our relation-learning algorithm and Foil is that
whereas Foil uses an information-theoretic measure to guide its hill-climbing
search, our method, like Džeroski and Bratko’s m-Foil [19], uses m-estimates
of a clause’s error to guide its construction. We have found that using this
evaluation function causes the algorithm to learn fewer, more general clauses

9 If the method is constrained from learning recursive definitions, the path for each
positive instance needs to be found only once since it will not change as clauses
are added for the target relation. In this case, before learning each new clause the
algorithm needs only to update counts indicating the number of instances covered
by each path prototype.

than when Foil’s information gain measure is used.

6.3 Experimental Evaluation

We evaluate our approach to learning relation rules using the data and four-
fold cross-validation methodology described in Section 4. On each iteration,
we learn the target relations using training instances from three of the univer-
sities in our data set, and test learned clauses using instances from the fourth
university.

Figure 15 shows a learned clause for each of the instructors of, department of,
and members of project relations. On average, there were 7.3, 3.8, and 6.5
clauses learned for these target concepts respectively. Along with each rule,
we show how well the rule classified test-set instances. Each of these rules was
learned on more than one of the training sets, therefore the test-set statistics
represent aggregates over the four test sets.

The rules learned for the instructors of relation are the simplest among the
three target relations. The learned rule shown for this relation, for example,
matches cases in which a course page has a hyperlink pointing to a person
page. The rule shown for the members of project relation is more interesting.
It describes members of project instances in which the project’s home page
points to an intermediate page which points to personal home pages. The
hyperlink from the project page to the intermediate page must have the word
“people” near it. This rule covers cases in which the members of a research
project are listed on a subsidiary “members” page instead of on the home page
of the project. The rule shown for the department of relation involves a three-
hyperlink path that links a department home page to a personal home page.
The rule requires that the word “graduate” occur near the second hyperlink
in the path. In this case, the algorithm has learned to exploit the fact that
departments often have a page that serves as a graduate student directory,
and that any student whose home page is pointed to by this directory is a
member of the department.

Along with each of our predicted relation instances, we calculate an associated
confidence in the prediction. We can then vary the coverage of our learned
rule sets by varying a threshold on these confidence values. We calculate the
confidence of each prediction by considering where most of the uncertainty in
the prediction lies: in the page classifications that are tested by each learned
clause. The confidence measure for a predicted relation instance is simply the
product of the confidence measures for the page classifications that factor into
the relation prediction.

Using these confidence measures, Figure 16 shows the test-set accuracy/coverage

instructors of(A,B) :- course(A), person(B), link to(C,B,A).

Test Set: 133 Pos, 5 Neg

department of(A,B) :- person(A), department(B), link to(C,D,A), link to(E,F,D),
link to(G,B,F), has neighborhood word graduate(E).

Test Set: 371 Pos, 4 Neg

members of project(A,B) :- research project(A), person(B), link to(C,A,D),
link to(E,D,B), has neighborhood word people(C).

Test Set: 18 Pos, 0 Neg

Fig. 15. A few of the rules learned for recognizing relation instances.

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

department_of_person
instructors_of_course
members_of_project

Fig. 16. Accuracy/coverage tradeoff for learned relation rules.

curves for the three target relations. The accuracy levels of all three rule sets
are fairly high. The members of project rules are better than 70% accurate
at coverage levels of up to about 46%. The instructors of rules are over 80%
accurate at coverage levels of 66% and above. The department of rules are at
least 97% accurate at coverage levels of up to 84%. The limited coverage levels
of the learned rules is due primarily to the limited coverage of our page clas-
sifiers. Note that all of the learned rules include literals which test predicted
page classifications. As Figure 11 shows, the coverage exhibited by our page
classifiers is below 80% for most classes.

7 Learning to Extract Text Fields

In some cases, the information we want to extract will not be represented by
Web pages or relations among pages, but by small fragments of text embedded
in pages. For example, given a personal home page, we might be interested in
extracting the person’s name. This type of task is commonly called informa-
tion extraction. This section discusses our approach to learning rules for such
information extraction tasks.

7.1 Approach

We have developed an information extraction learning algorithm called Srv

for “Sequence Rules with Validation.” Srv is a first-order learner in the spirit
of Foil. It shares Foil’s top-down approach and gain metric, but is designed
with the information extraction problem in mind. Consequently, it is limited
to a few pre-defined predicates, and it encompasses search heuristics specific to
the information extraction problem. Input to Srv is a set of pages, labeled to
identify instances of the field we want to extract, and a set of features defined
over tokens. Output is a set of information extraction rules. The extraction
process involves examining every possible text fragment of appropriate size to
see whether it matches any of the rules.

As in Foil, “growing” a rule in Srv means hill-climbing through a space of
possible literals, at each step adding a literal that matches as many positive
examples as possible while excluding a large number of previously covered
negative examples. When a rule is deemed good enough (either it covers only
positive examples, or further specialization is judged to be unproductive), all
positive examples matching it are removed from the training set, and the
process is repeated. In our particular domain, a positive example is a labeled
text fragment—a sequence of tokens—in one of our training documents; a
negative example is any unlabeled token sequence having the same size as
some positive example. During training we assess the goodness of a literal
using all such negative examples.

The representation used by our rule learner attempts to express the salient
characteristics of positive examples mainly in terms of the individual tokens
contained within them and surrounding them. Srv is given as input a set of
features defined over individual tokens. These features come in two varieties:
simple features map tokens to arbitrary discrete (but typically Boolean) values;
relational features map tokens to other tokens in the same document. An ex-
ample simple feature is capitalized. An example relational feature is next token
which, given a token, returns the token immediately following it.

Let F = wi, · · · , wj be a fragment of text, an unbroken sequence of tokens (wi)
from some document. At each step in rule growth, a literal is generated from
one of four templates:

• length(Relop, N): Constrains the length of F . Relop is one of {<,>,=} and
N is an integer. For example, the literal length(<, 3) means |F | < 3, where
|F | is the number of tokens in F . 10

• some(Var, Path, Feat, Value): Posits a feature-value test for some token in
the sequence. Var is a variable, Path is a list of relational features, Feat is
a simple feature and Value is a legal value of Feat. For example, the literal
some(B, [], capitalized, true) asserts that F contains a capitalized token and
binds this token to the variable B. Each distinct variable in a rule must bind
to a distinct token in a matching fragment. In logical terms, if in some other
literal in the current rule Srv has introduced the variable A and now makes
the above assertion, there is an implicit assertion of inequality between A
and B:
∃A,B ∈ F.A 6= B ∧ capitalized(B) = true

The Path argument, which is empty in the above example, is used to exploit
relational structure in the domain (see below).
• position(Var, From, Relop, N): Constrains the position of a token bound by

a some-literal in the current rule. From is either start or end, Relop is one of
{<,>,=}, and N is an integer. For example, the literal position(A, start, <, 2)
asserts that the token bound to A is either the first or second in F . In logic,
we might write this ∃A ∈ F.index(A)− index(start(F)) < 2 ∧ · · ·, where the
ellipsis (· · ·) stands for whatever other assertions are made about A in the
same rule.
• relpos(Var1, Var2, Relop, N): Constrains the relative position an ordering of

two tokens bound by different variables in the same rule. Relop is one of
{<,>,=}, and N is an integer. For example, the literal relpos(A, B, =, 1)
means token B immediately follows token A. In logic:
∃A,B ∈ F.index(B)− index(A) = 1 ∧ · · ·.

Like Foil, Srv can exploit relational structure in the domain. For Srv, the
only possible form of relational structure is that relating tokens to each other.
The most obvious example is the successor relation, which connects adjacent
tokens, but more interesting kinds of structure can be exploited, such as syn-
tactic structure. The Path argument to the some-predicate takes a list of rela-
tional features which posits a relationship between the token bound to the vari-
able (which is in F) and the token reached by composing the relational features
(which need not be in F). The feature-value test is applied to the “indirect”
token. For example, the literal some(A, [next token next token], numeric, true)
might be rendered in logic as ∃A ∈ F.numeric(next token(next token(A))) = true.

10 Note that all literals added to a rule implicitly refer to some fragment F , so we
omit the fragment variable from Srv literals for the sake of conciseness.

ownername(Fragment) :- some(B, [], in title, true),
length(<, 3),
some(B, [prev token], word, “gmt”),
some(A, [], longp, true),
some(B, [], word, unknown),
some(B, [], quadrupletonp, false)

Fig. 17. An extraction rule for name of home page owner. The English rendering of
this rule is, “a sequence of two tokens, one of which (A) is in a HTML title field and
longer than four characters, the other of which (B) is preceded by the token gmt, is
unknown from training, and is not a four-character token.” This is a high-accuracy
rule, achieving 10 correct out of 12 matched on a validation set.

Initially, the learner may only use paths of length zero or one; whenever a
non-empty path is used in a some predicate, the system makes longer paths
available. In this way, the computational expense that this facility entails is
kept under control.

7.2 Experimental Evaluation

As in the previous experiments, we followed the leave-one-university-outmethod-
ology, repeatedly holding the pages belonging to one of the four universities
out for testing and training on the remaining three. The data set for the
present experiment consists of all person pages in the data set. The unit of
measurement in this experiment is an individual page. If Srv’s most confident
prediction on a page corresponds exactly to some instance of the page owner’s
name, or if it makes no prediction for a page containing no name, its behavior
is counted as correct. Otherwise, it is counted as an error.

Last-Modified: Wednesday, 26-Jun-96 01:37:46 GMT

<title> Bruce Randall Donald</title>

<h1>

<p>
Bruce Randall Donald

Associate Professor

Fig. 18. An example HTML fragment which the rule in Figure 17 matches. In this
case, the fragment Bruce Randall in the title is extracted. Note that this is an
erroneous prediction since it misses the last name of the person.

Figures 17 and 18 show a learned rule and its application to a test case.
Figure 19 shows the accuracy-coverage curve for Srv on the name-extraction
task. Under the criteria described above, it achieves 65.1% accuracy when
all pages are processed. A full 16% of the files did not contain their owners’

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

A
cc

ur
ac

y

Coverage

name_of

Fig. 19. Accuracy/coverage tradeoff using Srv for name extraction. A prediction on
a file that does not contain a name is counted as an error.

names, however, and a large part of the learner’s error is because of spurious
predictions over these files. If we consider only the pages containing names,
Srv’s performance is 77.4%.

8 Related Work

There are several significant bodies of research that are related to the tasks
and methods discussed in this article. In this section we briefly review the
main areas of related work.

8.1 Document Classification

Our work is related to research in document classification, such as that re-
ported at recent Text REtrieval Conferences (TREC) [3,4]. A wide variety of
methods have been applied to the document-classification task.

The TFIDF approach to information retrieval is the basis for the Rocchio
classification algorithm which has become a standard baseline algorithm for
text classification [8,15,34]. Its “word-vector” approach involves describing
classes with a vector of weights, where each weight indicates how important
the corresponding word is to the class. This representation has been used with

many different learning algorithms, including memory based reasoning [40],
neural networks [49,58], linear discriminant analysis [58], logistic regression
[58], Widrow-Hoff and the exponentiated gradient (EG) algorithm [36].

Another useful line of research in text classification comes from basic ideas in
probability and information theory. Bayes Rule has been the starting point
for a number of classification algorithms [5,6,35,37,45,49], and the Minimum
Description Length principle has been used as the basis of an algorithm as
well [34].

Another line of research has been to use symbolic learning methods for text
classification. Numerous studies have used algorithms such as decision trees,
Swap-1, Ripper and Charade can be found in [5,6,8,13,36,37,45,46,49,65]. These
studies indicate that these algorithms are quite competitive with statistical-
based methods.

8.2 Information Extraction

The problem that we are addressing is related to the traditional informa-
tion extraction task, such as the research done in the Message Understanding
(MUC) [1,2] community. The work in the MUC community has considered
problems such as extracting symbolic descriptions of terrorist attacks from
news articles, constructing case frames that indicate fields such as the per-
petrator, victim, etc. One key difference between this work and the research
reported here is that we are concerned with extracting information from hy-
pertext, whereas the MUC work has focused on ordinary flat text. In addition,
our approach relies heavily on machine learning methods that can be trained
to extract information, whereas most early work in the MUC community relied
on hand-crafted methods for extracting information.

Recently, the problem of using machine-learning methods to induce information-
extraction routines has received more attention. PALKA [30] and AutoSlog
[57] are machine learning systems which learn extraction patterns from col-
lections of parsed documents that have been annotated to identify fragments
of interest. These patterns are then reviewed and manually installed into a
larger information extraction system. AutoSlog-TS [56] removes the require-
ment that documents be annotated.

CRYSTAL [61] and RAPIER [11] both demonstrate that machine learning
techniques can be used to learn rules that perform extraction autonomously.
CRYSTAL is a covering algorithm which takes parsed, annotated sentences as
input and produces rules for extracting from novel sentences. Rapier uses ideas
from relational learning and relaxes somewhat the reliance on syntactic pre-
processing. Starting with maximally specific extraction patterns, both systems

learn by dropping constraints and merging patterns. This contrasts with the
general-to-specific approach introduced here.

Several researchers have explored the problem of text extraction from the Web
and other Internet sources. One example is ILA [50], a system designed to learn
the semantics of the human-readable output of online databases by comparing
it with information whose is already known. Shopbot [18], a bargain hunting
agent, is designed to learn patterns from HTML to support the extraction of
pricing information from online commerical catalogs. Shopbot is one solution
to the general problem of “wrapper induction” [33,47,26], learning extraction
patterns for highly regular sources. At the same time, ideas that have proven
useful for general text have also been shown to work well for Web pages. Web-
foot [62] is a modification of CRYSTAL in which parsed sentence fragments
are replaced by segments of HTML. WHISK [63] combines the capabilities of
CRYSTAL and Webfoot in a system that is able to learn extraction patterns
for semi-structured or free text.

8.3 Extracting Semantic Information from Hypertext

Several other research groups have considered the semantic information that
can be automatically inferred and extracted from hypertext. Spertus [64]
presents a set of heuristics that relate hypertext conventions to semantic re-
lationships. Specifically, she considers relationships that can often be inferred
from hyperlink structure, file system organization, and HTML page structure.

Monge and Elkan [44] have developed a system that finds the Web page for
a paper given a bibliographic citation to it. Part of the task performed by
this system is to find the personal home page and the publications page of an
author starting from the home page of the person’s institution. For this task,
Monge and Elkan use search-control rules which are somewhat similar to the
relation-recognition rules we learned in Section 6. Their rules look for certain
keywords in hyperlinks to decide which ones to follow in the search. Whereas
their rules are hand-coded for a specific task, our work considers the problem
of learning such rules for arbitrary relations.

Pirolli et al. [51] consider the task of classifying pages into functional categories
such as head, index and reference. They characterize the classes using features
such as file size, number of incoming and outgoing hyperlinks, average depth of
children pages in the hyperlink graph, etc. Whereas our work has not directly
involved learning functional classes of pages, we have observed that our first-
order learners for both page and relation classification often implicitly learn
such functional categories. Recall, for example, that our learned first-order
rules for recognizing student pages prominently exploited the class of person

index pages. The features we use also differ somewhat from those of Pirolli et
al., but common to both approaches is the central importance of vector-based
text similarity and hyperlink connectivity.

8.4 Extracting Knowledge Bases from the Web

Other groups have worked on extracting propositional knowledge-base infor-
mation from the Web. Luke et al. [39] have proposed an extension to HTML
called SHOE whereby Web page authors can encode ontological information on
their pages. The have also developed a system, Expose, that extracts SHOE-
encoded information from Web pages, and stores it in a local knowledge base.
Their hope is that a library of standard ontologies will come into common
usage, enabling agents such as Expose to learn the information encoded on
the Web.

The START Information Server [29] provides a natural language interface to
a knowledge base collected from the Web. The knowledge base contains meta-
information about the content of the Web, so that a query to START returns
relevant hypertext segments. START builds its knowledge base by discovering
mostly manually added natural language annotations on Web pages.

The most significant recent development in this area is the advent of Extensible
Markup Language (XML) [10]. Whereas HTML is designed to describe the
layout of information in a page, XML can be used to describe information
about the contents of the page. As with SHOE, Web page authors can use
XML to encode ontological information about their pages. Since XML is a
World Wide Web Consortium standard, however, it is sure to be widely used.
We believe that methods for annotating the contents of Web pages, such as
SHOE and XML, can assist with the task of extracting knowledge bases from
the Web, but do not obviate the need for our Web→KB approach. There
are two notable limitations of approaches such as SHOE and XML. First,
they are of no use when Web page authors do not employ them. Second, they
presuppose a universal ontology. That is, since individual Web page authors
are responsible for annotating Web pages, the success of these approaches
hinges on the extent to which authors employ standard, shared ontologies in a
consistent manner. Moreover, ontological decisions are largely in the hands of
Web page authors in this approach. There may be cases where the ontological
categories used to describe a given Web page are not appropriate or relevant
categories for the tasks to which an extracted knowledge base will be applied.
In the Web→KB approach, on the other hand, these ontological decisions
can be made by the users of the system. One interesting way in the XML and
Web→KB approaches can potentially be combined, is by exploiting XML-
annotated pages as pre-labeled training data. That is, Web→KB could learn

to predict the XML annotations associated with a page, using the non-XML
elements of the page as input features. We plan to explore this issue in future
research.

8.5 Web Agents

The Web→KB system described here is an example of a Web agent that
browses the Web, extracting information as it goes. Many other Web agents
have been developed over the past few years, including several that involve
some form of learning. However, the vast majority of these systems use learn-
ing to improve their ability to retrieve text information, rather that to extract
computer-understandable information. For example, Joachims et al. [28] de-
scribe a Web agent called WebWatcher that serves as a tour guide for users
browsing the Web. WebWatcher learns to suggest appropriate hyperlinks given
users’ interests, based on the hyperlinks followed by previous users with similar
interests. As such, it involves learning to classify hyperlinks – a task similar to
the work reported here on learning to extract relational information. A system
with a similar goal is Letizia [38], which learns the interests of a single user,
in contrast to WebWatcher which learns from a community of users. Syskill
and Webert [49] offers a more restricted way of browsing than WebWatcher
and Letizia. Starting from a manually constructed index page for a particular
topic, the user can rate hyperlinks off this page. The system uses the ratings
to learn a user specific topic profile that can be used to suggest unexplored
hyperlinks on the page. Syskill and Webert can also use search engines like
LYCOS to retrieve pages by turning the topic profile into a query. Lira [7]
works in an off-line setting. A general model of one user’s interest is learned
by asking the user to rate pages. Lira uses the model to browse the Web off-
line and returns a set of pages that match the user’s interest. One related
system that is closer in spirit to our work is Shakes et al.’s [59] Ahoy system,
which attempts to locate the home page of a person, given information such
as the person’s name, organizational affiliation etc. Ahoy uses knowledge of
home page placement conventions to search for personal home pages, and in
fact learns these conventions from experience.

9 Conclusions and Future Work

We began this article with a goal and a thesis. The goal is to automatically
create a large knowledge base whose content mirrors that of the World Wide.
The thesis is that one can automatically create knowledge bases from the
Web by first using machine learning algorithms to create information extrac-
tion methods for each of the desired types of knowledge, and then applying

these methods to extract probabilistic, symbolic statements directly from Web
hypertext.

This article provides support for our thesis by proposing and testing a variety
of machine learning algorithms for information extraction, and by describing
the Web→KB system that incorporates the learned information extractors
to browse Web sites and populate a knowledge base. As shown in Section 2
and elsewhere, our system has achieved an accuracy of better than 70% at
coverage levels of approximately 30% when using these learned information
extractors to populate its university knowledge base while browsing new Web
sites. These results provide encouraging initial support for our thesis, and
suggest many routes for future research.

We have explored a variety of learning methods for this task, including statisti-
cal bag-of-words classifiers, first-order rule learners, and multi-strategy learn-
ing methods. We have found that statistical bag of words methods, derived
from document classification methods in information retrieval, work well for
classifying individual Web pages. However, these methods do not take advan-
tage of the special hypertext structure available on the Web. Therefore, we de-
veloped first-order learning algorithms both for learning to classify pages and
learning to recognize relations among several pages. These first-order methods
are capable of describing patterns that occur across multiple Web pages, their
hyperlinks, and specific words that appear on these pages and hyperlinks. Our
experiments indicate that these methods tend to have higher accuracy than
the bag of words classifiers, though they frequently provide lower coverage. In
addition to these first-order learning methods that “look outward” from the
page to consider its neighbors, we also have developed methods that “look
inward” to consider the detailed structure of hypertext and specific text frag-
ments within a single Web page. The Srv algorithm described in Section 7
learns relational rules that extract specific types of text fields within a Web
page, such as a person’s name.

We believe that the toolbox of methods we have described here will be ap-
plicable to a wide range of problem domains. For new domains, however, we
may apply and combine the methods in ways not explored in this article. For
example, in current work in a new problem domain, we are using page classi-
fiers to recognize instances of a particular relation (the economic sector of a
company), whereas in the work described here we used page classifiers to rec-
ognize class instances. In short, the most appropriate method for recognizing
instances for a particular class or relation will depend on how these instances
tend to be represented in the Web.

Based on the initial results reported here, we are optimistic about the future
prospects for automatically constructing and maintaining a symbolic knowl-
edge base by interpreting hypertext on the Web. Key questions remain, how-

ever. For example, what level of accuracy can be achieved by learned proce-
dures for extracting information from the Web, and what level of accuracy will
be required of them? For some tasks the required accuracy will be quite high
(e.g., for an intelligent system that automatically invests money on behalf of its
user). However, for tasks such as information retrieval on the Web, the system
need only be sufficiently accurate to outperform the current keyword-based
retrieval systems that have no real notion of an ontology. Although further
research toward stronger learning methods is warranted, we conjecture that
there will be a steady stream of applications where even an approximately
correct knowledge base will outperform current keyword retrieval methods. A
second type of question for our system is how much effort will be required
to train the system for each new ontology, or for each extension to the grow-
ing ontology? In the experiments reported here, the system was trained using
thousands of hand-labeled Web pages that were collected at a cost of approx-
imately one or two person-weeks of effort. In newer work we are beginning to
explore methods for reducing the dependence on hand labeled data. Below is
a list of these and other research opportunities that merit further research:

• Develop learning methods that exploit the hierarchical relationships that
exist among classes in the hierarchy. For example, in recent work we have
shown that the accuracy of our Bayesian bag of words classifier can be
improved by using the class hierarchy to obtain more accurate estimates of
class conditional word probabilities [42].
• Use the vast pool of unlabeled Web pages to supplement the available hand-

labeled data to improve learning accuracy. Recently we have shown that the
EM algorithm can be used to combine labeled and unlabeled data to boost
accuracy [48]. We are also exploring the combination of EM with pool-based
training for active learning in which the learner requests labels for specific
Web pages whose label will be especially helpful [41].
• Co-training multiple classifiers. For example, consider a problem setting in

which one Web page classifier examines the words on the page, and a second
classifier examines instead the words on the incoming hyperlinks to that
page. In recent work, we have proposed a method by which each classifier
acts as a trainer for the other, and we have provided initial experiments and
theoretical analysis showing the promise of this approach [9].
• Exploit more linguistic structure. We plan to explore ways in which noun,

verb, and prepositional phrases extracted from the text can be used as
features for information extraction. We have conducted preliminary exper-
iments that show improved accuracy in some cases when our bag of words
representation is augmented by these extracted phrases [25]. We conjecture
that such linguistic features will be even more useful for tasks with few
words, such as classifying individual hyperlinks.
• Explore multiple strategies for learning to extract text fields from Web

pages. We have developed a number of approaches to this task [20,21,23],
including multi-strategy learning [22].

• Integrate statistical bag-of-words methods into first-order learning tasks.
We have begun developing methods that augment first-order learning with
the ability to use bag-of-words classifiers to invent new predicates for char-
acterizing the pages and hyperlinks referenced in learned rules [60].
• Exploit more HTML structure. We plan to investigate the utility of repre-

senting the HTML structure of pages when learning rules for relation classi-
fication and information extraction. We have investigated one approach to
representing HTML structure and exploiting it for learning tasks [16].
• Learn regularities over the growing knowledge base. We plan to use learning

methods to discover interesting regularities over the facts that have been
extracted from the Web, and to use these learned facts to improve future
fact extraction. For example, in the university knowledge base we might
expect to learn how to predict the department of a faculty member based
on the department of her student advisees.
• Extend the ontology to new problem domains. We are currently applying

our methods to the task of extracting information about companies from
the Web.

A Assumptions About How Class and Relation Instances Are Rep-
resented

In this appendix we provide a formal treatment of the assumptions we make
about how class and relation instances can be represented in the Web.

Let a Web page p be a sequence of tokens, (tp1, t
p
2, ...t

p
n), where the tokens are

words and HTML tags. Define the function page(tps, ...t
p
e) so that it returns the

page p in which a sequence of tokens resides.

Some tokens represent hyperlinks. Let the predicate hyperlink(tpi) be true if
the ith token in page p is a hyperlink, and let the function range(tpi) return
the page that is pointed to by a given hyperlink.

We define a relation linked(u, v) that represents the cases where there is a
direct hyperlink from u to v, or where there is a path from u to v following
the directed edges of hyperlinks:

(1) ∃tui such that hyperlink(tui) = true and range(tui) = v, or
(2) ∃w such that linked(u, w) and linked(w, v).

We define a relation connected(u, v) that represents the cases where there is a
path from u to v following the undirected edges of hyperlinks:

(1) ∃tui such that hyperlink(tui) = true and range(tui) = v, or
(2) ∃tvi such that hyperlink(tvi) = true and range(tvi) = u, or
(3) ∃w such that connected(u, w) and connected(w, v).

Let us define a segment of hypertext as follows:

(1) A segment can consist of a subsequence of tokens in a page, (tps, ...t
p
e),

where 1 ≤ s ≤ e ≤ n.
(2) A segment can consist of a page itself, p = (tp1, t

p
2, ...t

p
n).

(3) A segment can consist of a rooted subgraph of pages: P = p0∪{pi | ∃pj ∈
P, linked(pj , pi)}. Here, p0 represents the root of the subgraph.

We define a relation contains(u, v) that holds between two segments, u and v
under the following conditions:

(1) both u and v are pages or sequences of tokens within pages, tus ≥ tvs, and
tue ≤ tve.

(2) u is a either a page or a sequence of tokens within a page, v is a rooted
graph, and page(u) ∈ v,

(3) both u and v are rooted graphs, and u ⊂ v.

Finally, let the predicate modelu(v) be true when the segment v satisfies an

arbitrary statistical model representing v’s relatedness to u.

Now, using these definitions, we state our assumptions about how class and
relation instances can be represented on the Web.

• We assume that each instance of an ontology class is represented by one or
more hypertext segments as defined above.
• We assume that each instance R(a,b) of a relation R is represented in one

of three ways. Let sa be the segment representing a and sb be the segment
representing b. Then R(a, b) can be represented by:

(1) connected(sa, sb),
(2) contains(sa, sb), or
(3) modelb(sa) = true.

B Obtaining More Evenly Distributed Scores from Naive Bayes

While naive Bayes often provides accurate classifications, it presents problems
when one wants to interpret the score for each class as an estimate of un-
certainty. Per-class scores for the winning class tend to gravitate toward 1.0
and scores for the losing class tend toward 0.0. Often the effect is so strong
that floating-point round-off error causes the probability to be calculated as
exactly 1.0 for the winning class and 0.0 for the others. These extreme values
are an artifact of the independence assumption. If for each word, the value
of Pr(w|C) between different classes differs by one order of magnitude, then
the final probabilities will differ by as many orders of magnitude as there are
words in the document. Class-conditional word probabilities would be much
more similar across classes if word dependencies were taken into account.

We would like scores that accurately reflect the uncertainty in each predic-
tion and enable us to sensibly compare the scores of multiple documents. We
attempt to counter the extreme values, while still avoiding the complexity of
modeling word-dependencies, in two steps.

First, instead of using the product of the word likelihoods, we use the geometric
mean of the likelihoods. This approach is closely related to the concept of
perplexity in language modeling for speech recognition [54]. Perplexity is a
measure of the likelihood of some data given a model, where the likelihood
is normalized for the length of the data. We begin with naive Bayes (Eq. 5),
rewrite the sum to an equivalent expression that sums over all words in the
vocabulary T instead of just the words in the document (Eq. B.1), take the
log, (Eq. B.2), and divide by the number of words in the document (Eq. B.3).
This results in the log of the geometric mean of the word likelihoods, plus a
term for the class prior.

Pr(c)
n∏
i=1

Pr(wi|c) = Pr(c)
T∏
i=1

Pr(wi|c)N(wi,d) (B.1)

∝ log(Pr(c)) +
T∑
i=1

N(wi, d) log(Pr(wi|c)) (B.2)

∝ log(Pr(c))

n
+

T∑
i=1

N(wi, d)

n
log(Pr(wi|c)) (B.3)

If we interpret N(wi, d)/n as Pr(wi|d), the right-hand term of this expression
is the negative Cross Entropy [14] between the distribution of words induced

by the document with the distribution of words induced by the class:

log(Pr(c))

n
+

T∑
i=1

Pr(wi|d) log(Pr(wi|c)). (B.4)

Thus, the second term specifies that the class c with the highest score will be
the one with the lowest Cross Entropy—the class that could “compress” the
document most efficiently. This expression results in scores for each class that
vary smoothly, without tendencies toward extreme values.

Cross Entropy in Equation B.4 can be intuitively understood as the average
number of bits necessary to encode a word from the document using an en-
coding that is optimal for the distribution of words independently drawn from
the class. Cross Entropy does not, however, account for the varying difficulty
of encoding different documents—some documents are more complex, and in-
herently require more bits on average to encode. We want scores that can be
sensibly compared between documents. A way to account for differences be-
tween documents is to use Kulback-Leibler Divergence—that is, to subtract
the average number of bits it would take to encode the document using its
optimal encoding (assuming again, that the words are independent of one an-
other). This results in an expression that can be intuitively understood as
the average number of extra bits required because we are using a subopti-
mal encoding instead of the optimal encoding. We modify the second term of
Equation B.4 so that it expresses the KL Divergence score for each class:

log(Pr(c))

n
+

T∑
i=1

Pr(wi|d) log

(
Pr(wi|c)
Pr(wi|d)

)
. (B.5)

We also normalize the scores across all classes so that they sum to a con-
stant. This normalization also has the effect of increasing our confidence in
the classification of documents with high word entropy. This is intuitively de-
sirable because high-entropy documents have more unique words, which can
be considered as stronger evidence, and more likely to result in a correct clas-
sification.

Note that the modifications to 5 do not change the ordering of class estimates
for a given document. Consequently, the classifications made by naive Bayes
are not affected. These modifications only serve to provide well-distributed,
comparable scores.

Note that none of the changes since straightforward naive Bayes in Equation 5
has changed the scored ordering of different classes for the same document—
they have not changed classification that would have resulted from naive

Bayes. They have only served to provide well-distributed, comparable scores.

C The URL Grouping Algorithm

In this appendix, we present the details of the algorithm used to identify
multi-page segments. As discussed in Section 5.4, we use the regularities in
URL structure and naming to group related pages together, and to identify
the any primary home pages in each group.

In the algorithm below, all wildcards must match some text. The wildcard
* does not match across directory boundaries, but the wildcard @ does. The
wildcard ? matches a single digit. The wildcard variable %1 does not match
across directories.

• Inputs: A set of web pages, each with a URL, a tentative classification and
a score.
• For each web page, identify its group:
• The group is the longest prefix (indicated in parentheses) when the URL

matches any of the patterns:
- (@/{user,faculty,people,home,projects}/*)/*.{html,htm}
- (@/{user,faculty,people,home,projects}/*)/
- (@/{user,faculty,people,home,projects}/*)
- (@/{cs???,www/,∼*})/*.{html,htm}
- (@/{cs???,www/,∼*})/
- (@/{cs???,www/,∼*})

• If no prefix matches, the group is the complete directory portion of the
URL.

• For each group, identify at least one primary page:
• A primary page is any page which URL matches:

- @/index.{html,htm}
- @/home.{html,htm}
- @/homepage.{html,htm}
- @/cs???.{html,htm}
- @/%1/%1.{html,htm}

• If no page in the group matches one of these patterns, then the page with
the highest score for any non-other class is a primary page.

• Change the classification of all non-primary pages to other.
• Outputs: The final classification and score of each web page.

References

[1] Proceedings of the Fourth Message Understanding Conference (MUC-4),
McLean, Virginia, June 1992. Morgan Kaufmann Publisher, Inc., San Francisco.

[2] Proceedings of the Fifth Message Understanding Conference (MUC-5),
Baltimore, Maryland, August 1993. Morgan Kaufmann Publisher, Inc., San
Francisco.

[3] The Fourth Text Retrieval Cconference. National Technical Information
Services, Springfield, VA, 1995. http://www-nlpir.nist.gov/TREC/t4\
_proceedings.html.

[4] The Fifth Text Retrieval Cconference. National Technical Information Services,
Springfield, VA, 1996. http://www-nlpir.nist.gov/TREC/t5_proceedings.
html.

[5] C. Apté, F. Damerau, and S. M. Weiss. Automated learning of decision rules for
text categorization. ACM Transactions on Information Systems, 12(3):233–251,
July 1994.

[6] C. Apté, F. Damerau, and S. M. Weiss. Towards language independent
automated learning of text categorization models. Technical report, IBM, 1994.
(TR 19481) (also appeared in SIGIR94).

[7] M. Balabanovic and Y. Shoham. Learning information retrieval agents:
Experiments with automated web browsing. In AAAI Spring Symposium on
Information Gathering from Heterogeneous, Distributed Environments, 1995.

[8] E. Bloedorn, I. Mani, and T. R. MacMillan. Machine learning of user profiles:
Representational issues. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 433–438. AAAI/MIT Press, 1996.

[9] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the 11th Annual Conference on Computational
Learning Theory. ACM, 1998.

[10] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup
language (XML) 1.0. Technical Report REC-xml-19980210, World Wide Web
Consortium, 1998. http://www.w3.org/TR/REC-xml.

[11] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for
information extraction. In Working Papers of ACL-97 Workshop on Natural
Language Learning, 1997.

[12] B. Cestnik. Estimating probabilities: A crucial task in machine learning. In
L. Aiello, editor, Proceedings of the Ninth European Conference on Artificial
Intelligence (ECAI-90), pages 147–150, Stockholm, Sweden, 1990. Pitman.

[13] W. W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth
International Conference on Machine Learning. Morgan Kaufmann, 1995.

[14] T. H. Cover and J. A. Thomas. Elements of Information Theory. John Wiley
and Sons, Inc., 1991.

[15] H.C.M. de Kroon, T.M. Mitchell, and E.J.H Kerckhoffs. Improving learning
accuracy in information filtering. In International Conference on Machine
Learning - Workshop on Machine Learning Meets HCI (ICML-96), 1996.

[16] D. DiPasquo. Using HTML formatting to aid in natural language processing
on the World
Wide Web, June 1998. Senior thesis, Computer Science Department, Carnegie
Mellon University (http://www.cs.cmu.edu/∼WebKB/danthesis.ps.gz).

[17] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning, 29:103–130, 1997.

[18] R. Doorenbos, O. Etzioni, and D. S. Weld. A scalable comparison-shopping
agent for the world-wide web. In Proceedings of the 1st International Conference
on Autonomous Agents. ACM, 1997.

[19] S. Džeroski and I. Bratko. Handling noise in inductive logic programming.
In S.H. Muggleton and K. Furukawa, editors, Proceedings of the Second
International Workshop on Inductive Logic Programming (ILP-92), number
TM-1182 in ICOT Technical Memorandum, pages 109–125, Tokyo, Japan, 1992.
Institute for New Generation Computer Technology.

[20] D. Freitag. Using grammatical inference to improve precision in information
extraction. In ICML-97 Workshop on Automation Induction, Grammatical
Inference, and Language Acquisition, Nashville, TN, 1997. Morgan Kaufmann.

[21] D. Freitag. Information extraction from HTML: Application of a general
learning approach. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence, Madison, WI, 1998. AAAI Press.

[22] D. Freitag. Multistrategy learning for information extraction. In Proceedings of
the 15th International Conference on Machine Learning, pages 161–169. Morgan
Kaufmann, 1998.

[23] D. Freitag. Toward general-purpose learning for information extraction. In
Proceedings of COLING/ACL-98, 1998.

[24] Jerome H. Friedman. On bias, variance, 0/1-loss, and the curse-of-
dimensionality. Data Mining and Knowledge Discovery, 1(1):55–77, 1997.

[25] J. Fuernkranz, T. Mitchell, and E. Riloff. A case study in using
linguistic phrases for text categorization of the www. In Working Notes
of the AAAI/ICML Workshop on Learning for Text Categorization, 1998.
http://www.cs.cmu.edu/∼WebKB/aaai-ws-aslog.ps.gz.

[26] C.-N. Hsu and M.-T. Dung. Wrapping semistructured web pages with finite-
state transducers. In Proceedings of the Conference on Automatic Learning and
Discovery (CONALD-98), 1998.

[27] T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for
text categorization. In Proceedings of the Fourteenth International Conference
on Machine Learning, pages 143–151, Nashville, TN, 1997. Morgan Kaufmann.

[28] T. Joachims, D. Freitag, and T. Mitchell. Webwatcher: A tour guide for
the World Wide Web. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 770–775, Nagoya, Japan, 1997.
Morgan Kaufmann.

[29] B. Katz. From sentence processing to information access on the World Wide
Web. In Proceedings of the AAAI Spring Symposium on Natural Language
Processing for the World Wide Web, 1997.

[30] J.-T. Kim and D. I. Moldovan. Acquisition of linguistic patterns for knowledge-
based information extraction. IEEE Transactions on Knowledge and Data
Engineering, 1995.

[31] D. Koller and M. Sahami. Toward optimal feature selection. In Proceedings of
Thirteenth International Conference on Machine Learning. Morgan Kaufmann,
1996.

[32] D. Koller and M. Sahami. Hierarchically classifying documents using very few
words. In Proceedings of the Fourteenth International Conference on Machine
Learning, pages 170–178, Nashville, TN, 1997. Morgan Kaufmann.

[33] N. Kushmerick. Wrapper Induction for Information Extraction. PhD thesis,
University of Washington, 1997. Tech Report UW-CSE-97-11-04.

[34] K. Lang. NewsWeeder: Learning to filter Netnews. In Proceedings of the Twelfth
International Conference on Machine Learning. Morgan Kaufmann, 1995.

[35] D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In
Proceedings of the Seventeenth Annual International ACM SIGIR Conference
on Research and Development in Inforamtion Retrieval (SIGIR94), 1994.

[36] D. Lewis, R. E. Shapire, J. P. Callan, and R. Papka. Training algorithms for
linear text classifiers. In Proceedings of the Nineteenth Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 298–306, 1996.

[37] D. D. Lewis and M. Ringuette. A comparison of two learning algorithms for
text categorization. In Third Annual Symposium on Document Analysis and
Information Retrieval, pages 81–93, 1994.

[38] H. Lieberman. Letizia: An agent that assists Web browsing. In Proceedings of
the Fourteenth International Joint Conference on Artificial Intelligence, pages
924–929. Morgan Kaufmann, 1995.

[39] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based Web agents.
In W. L. Johnson, editor, Proceedings of the 1st International Conference on
Autonomous Agents, pages 59–66. ACM, 1997.

[40] B. Masand, G. Linoff, and D. Waltz. Classifying news stories using memory
based reasoning. In Proceedings of the Fifteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR92), pages 59–65, 1992.

[41] A. McCallum and K. Nigam. Employing EM in pool-based active learning
for text classification. In Proceedings of the 15th International Conference on
Machine Learning, pages 350–358. Morgan Kaufmann, 1998.

[42] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng. Improving text clasification
by shrinkage in a hierarchy of classes. In Proceedings of the 15th International
Conference on Machine Learning, pages 359–367. Morgan Kaufmann, 1998.

[43] A. K. McCallum and K. Nigam. A comparison of event models for naive bayes
text classification. In Working Notes of the ICML/AAAI Workshop on Learning
for Text Categorization, 1998. http://www.cs.cmu.edu/∼mccallum.

[44] A. E. Monge and C. P. Elkan. The webfind tool for finding scientific papers
over the Worldwide Web. In Proceedings of the Third International Congress
on Computer Science Research, Tijuana, Mexico, 1996.

[45] I. Moulinier and J.-G. Ganascia. Applying an existing machine learning
algorithm to text categorization. In S. Wermter, E. Riloff, and G. Scheler,
editors, Connectionist, Statistical, and Symbolic Approaches to Learning for
Natural Language Processing. Springer-Verlag, March 1996.

[46] I. Moulinier, G. Ras̆kinis, and J.-G. Ganascia. Text categorization: a symbolic
approach. In SDAIR, 1996.

[47] Ion Muslea, Steve Minton, and Craig Knoblock. Wrapper induction for
semistructured, Web-based information sources. In Proceedings of the
Conference on Automatic Learning and Discovery (CONALD-98), 1998.

[48] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 1999. To
appear.

[49] M. J. Pazzani, J. Muramatsu, and D. Billsus. Syskill & Webert: Identifying
interesting Web sites. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 54–59, Portland, OR, 1996. AAAI/MIT Press.

[50] M. Perkowitz and O. Etzioni. Category translation: learning to understand
information on the Internet. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence, pages 930–936. Morgan Kaufmann, 1995.

[51] P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s ear: Extracting usable
structures from the Web. In Human Factors in Computing Systems: CHI ’96
Conference Proceedings, pages 118–125, New York, NY, 1996.

[52] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239–2666, 1990.

[53] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In
Proceedings of the European Conference on Machine Learning, pages 3–20,
Vienna, Austria, 1993.

[54] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice
Hall Signal Processing Series, 1993.

[55] B. L. Richards and R. J. Mooney. Learning relations by pathfinding. In
Proceedings of the Tenth National Conference on Artificial Intelligence, pages
50–55, San Jose, CA, 1992. AAAI/MIT Press.

[56] E. Riloff. Automatically generating extraction patterns from untagged text.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence,
pages 1044–1049. AAAI/MIT Press, 1996.

[57] E. Riloff. An empirical study of automated dictionary construction for
information extraction in three domains. Arificial Intelligence, 85:101–134,
1996.

[58] H. Schütze, D. A. Hull, and J. O. Pedersen. A comparison of classifiers and
document representations for the routing problem. In Proceedings of the 18th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR95), pages 229–237, 1995.

[59] M. Shakes, J. Langheinrich and O. Etzioni. Dynamic reference sifting: a case
study in the homepage domain. In Proceedings of Sixth International World
Wide Web Conference, Santa Clara, CA, 1996.

[60] S. Slattery and M. Craven. Combining statistical and relational methods
for learning in hypertext domains. In Proceedings of the 8th International
Conference on Inductive Logic Programming. Springer Verlag, 1998.

[61] S. Soderland. Learning Text Analysis Rules for Domain-specific Natural
Language Processing. PhD thesis, University of Massachusetts, 1996. Available
as Department of Computer Science Technical Report 96-087.

[62] S. Soderland. Learning to extract text-based information from the World
Wide Web. In Proceedings of the 3rd International Conference on Knowledge
Discovery and Data Mining, 1997.

[63] Stephen Soderland. Learning information extraction rules for semi-structured
and free text. Machine Learning, 34(1), February 1999.

[64] E. Spertus. ParaSite: Mining structural information on the Web. In Proceedings
of the Sixth International World Wide Web Conference, Santa Clara, CA, 1997.

[65] S. M. Weiss and N. Indurkhya. Optimized rule induction. IEEE Expert, pages
61–69, December 1993.

[66] I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating the
probabilities of novel events in adaptive text compression. IEEE Transactions
on Information Theory, 37(4), July 1991.

[67] Y. Yang and J. Pederson. Feature selection in statistical learning of text
categorization. In Proceedings of the Fourteenth International Conference on
Machine Learning, pages 412–420, Nashville, TN, 1997. Morgan Kaufmann.

