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ABSTRACT
Informationextractorsandclassifiersoperatingon unrestricted,un-
structuredtextsareanerrorfulsourceof largeamountsof potentially
usefulinformation,especiallywhencombinedwith a crawler which
automaticallyaugmentsthe knowledgebasefrom the world-wide
web. At thesametime, thereis muchstructuredinformationon the
World WideWeb. Wrappingtheweb-siteswhichprovidethiskindof
informationprovideuswith asecondsourceof information;possibly
lessup-to-date,but reliableas facts. We give a casestudyof com-
bining information from thesetwo kinds of sourcesin the context
of learningfactsaboutcompanies.We provide resultsof associa-
tion rules,propositionalandrelationallearning,which demonstrate
that data-miningcanhelpus improve our extractors,andthatusing
information from two kinds of sourcesimproves the reliability of
data-minedrules.

1. INTRODUCTION
The World Wide Web hasbecomea significantsourceof informa-
tion. Most of this computer-retrievable informationis intendedfor
consumptionby humansandis not readily-availableasadatasource
in computer-understandableform. Onecurrentresearchchallenge
for this domainis to have computersnot only gatherandrepresent
knowledgeexisting on the Web,but alsoto usethat knowledgefor
planning,acting,andcreatingnew knowledge.In otherwords,is it
possibleto learnnew thingsfrom theWeb?

If this challengeis thoughtof as a stepwiseprocessof first gath-
ering knowledgeandthenmining it, thenseveral researchershave
addressedthe first pieceof this challenge. The wrapperinduction
community[12, 11] hasdevelopedlearningalgorithmsfor extract-
ing propositionalknowledgefrom highly-structuredautomatically-
generatedweb pages.Their goal is to reconstructthe explicit data
sourcesusedto createthe web pages.For example,[3] efficiently
learnextractorsfor informationaboutmovie theatersandrestaurants
from Web-basedentertainmentguides,andcombinethis information
with amapsystemto createanintegratedapplication.Theinforma-
tion extractioncommunity, which grew up aroundtheMUC confer-
ences[14], is orientedmoretowardsextractingpropositionalknowl-
edgefrom free-form,unstructureddatasources.Thegoal for these
techniquesis to reconstructin symbolicform knowledgeknown by
the authorandrepresentedexplicitly in the text of theweb pagein
question.Thefield hasprogressedfrom hand-constructedextraction
rules[20] and[19] to learningextractionrulesfrom asetof data.For
example,[9] learnsrule-basedinformationextractorsto identify the
nameof apersongiventheirhomepage.A third approachdealswith

extractingrelationalknowledgeexisting on theWebthrougha com-
binationof webpagesandtheir hyperlinkstructure.The goal is to
look beyondtheformattedtext on webpages,to learnto identify re-
lationssuggestedby hyperlinksbetweenpages.In oneexample,[18]
userelationallearningto identify advisor-adviseerelationsbetween
faculty andgraduatestudentsusingthe text andhyperlinkson their
webpages.

In ourpreviouswork [5, 6], theWeb–� KB projecthasfocusedonin-
tegratingthesethreetypesof informationgatheringfor thepurposeof
constructingrelationalandpropositionalsymbolicknowledgeusing
theWebasourdatasource.We useda largesetof featureextractors
includingsimplehand-writtenwrappers,learnedinformationextrac-
tors,text classificationandrelationallearning.Theresearchdemon-
stratedthat it is possibleto discover, with relatively high accuracy,
a collectionof factswithin aspecificdomainof interestby selective
spideringof theWeb.

This representsonly thefirst stageof our initially-statedchallenge;
we muststill demonstratethat informationextractedfrom the Web
is both accurateanddetailedenoughto be useful. We aim to first
constructsuchaknowledgebaseandthenperformdatamining on it
to identify patternsof knowledgethatwerenotexplicitly represented
asfactson theWeb.

In this paper, we detail our currentwork in creatingand using a
knowledgebaseaboutcorporationsaroundtheworld. Built by spi-
deringbothprimaryandsecondaryinformationsourceson theWeb,
we have collecteda knowledgebaseof mostly-truerelationaland
propositionalfactson a total of 4312companies.We have applied
severaldatamining techniquesto this knowledgebase.Our prelim-
inary resultsindicatethat thereis indeedpromisein automatically
learningnew thingsfrom theWeb. For example,we discover inter-
estingregularitiesin our datasuchas“Advertisingagenciestendto
be locatedin New York.” Sucha rule is automaticallyconstructed
by extracting and identifying locationsand industry sectorsof all
our companies,and then noticing that companiesin the advertis-
ing industry disproportionatelyhave locationsin New York. The
knowledgethatwehaveextractedto dateis primarily commonsense
or known knowledgeaboutcompaniesthatarenot explicitly repre-
sentedasfacts in our knowledgebase. We considerthis an appro-
priatefirst stepin demonstratingthe feasibility of this approach.In
futureefforts,we aimto discover novel relationsin our datathatare
trueandmeaningful.

Note that the approachto text mining we advocatein this paper
standsin significantcontrastto whatis traditionallytermedtext data
mining [10]. Other approachesusethe text itself as the stratafor



performinga mining analysis.For example,[10] hascreateda sys-
temfor
�

genefunctiondiscovery usingmedicaltexts. [2] describea
processfor text mining to discover grammatical,morphologicaland
structuralrules that hold true for the text in question. In contrast,
we do not usethebase-level text asinput to our mining algorithms,
but first build a traditionaldatamining datasetthroughtheuseof a
varietyof simpleandelaboratetext featureextractors.Then,we ap-
ply fairly traditionaldatamining algorithmsto discover knowledge
aboutthesubjectof thetext.

This paperfirst describesthefeatures,datasources,andlearningal-
gorithmsusedto constructthecorporateknowledgebase.Thenwe
presenta brief overview of the datamining techniqueswe employ.
Weshow ourinitial dataminingresults.Finally, wediscussourplans
for continuingthis researchwith specificsuggestionsanddiscussion
of futurework.

Figure 1: Processof acquiring potentially interesting informa-
tion about companiesfrom the Web.

2. DATA SOURCESAND FEATURES
Our goal was to assemblea knowledgebasecontaininginforma-
tion abouta large numberof companies,then usethis knowledge
basefor datamining experimentsto explore somegeneralproper-
tiesof companiesandtheir relationshipswith eachother. This pro-
cessis illustratedin Figure1. To begin datacollection,weconsulted
theHooversOnlineWebresource(<www.hoovers.com>) which
containsdetailedinformation abouta large numberof companies,
andselectedthosecompanieswith home-pageURLs listed. These
company namesandURLs weregivento a customcrawler we built
for extracting information from company Web sites. This crawler
visited 4312differentcompany Web sitesandsearchedthe first 50
Webpageson eachsite(in breadthfirst order)for thefeatureslisted
in Section2.1. In all our crawler examinedjust over 108,000Web
pages.To augmentthis information,we built a wrapperto extract
informationabouteachof these4312companiesfrom Hoovers.The
detailsof thesewrappedfeaturesaregiven in Section2.2. Thecom-
pletelist of featuresis givenin Table1.

2.1 Extracted features
Theextractedfeaturesall comedirectly from crawling thecompany
Websites.A varietyof techniques,from thesimpleto theelaborate
wereusedto createthem.

At the simpleend, the links-to andmentions featureswere found
usingsimpletext searcheson all thewebpages,with a pre-defined

list of company URLs andnamestakenfrom Hoovers.Theofficers
werefoundusinga very simpleregularexpressionon any pagethat
containedthe word “officer” or “director”. The performs-activity
featureis similar, looking for keywordsassociatedwith eachtypeof
activity on the Web pagesof thecompany. If the top level domain
of the company’s homepageURL is a countrydomain,then that
countryis usedasthevaluefor thefeatureurl-country .

Text classificationmethodswereusedto extractsectorandcoarse-
sectorfeatures.Usinganindependentsetof companieswith known
sector andcoarse-sectorlabels,we built a Naive Bayesianmodel
for the sectorlabels(200differentvalues)andthecoarse-sectorla-
bels(12differentvalues),basedonasampleof Webpagesfrom each
company’sWebsite. Naive Bayesascommonlyusedon text [13] is
astandardtext classificationalgorithmwhich is easyto trainandper-
formsquitewell. For eachcompany crawled in our new knowledge
base,the labelspredictedby thesemodelson thepooledWebpages
from thecompany’s sitewereusedasthesectorandcoarse-sector
values.

The locations featurewasextractedusingthemostadvancedInfor-
mationExtractiontechniques.A Naive Bayesmodelof regionsof
text surroundinglocationswasusedasdescribedin [8] in conjunction
with phrase-basedextractionruleslearnedfrom ahandfulof seedex-
amplesusingmeta-bootstrappingandtheAutoSlogsystem[17].

2.2 Wrapper featuresfr om secondarysources
In contrastto thefeaturesextractedfrom thecompany Websites,the
extractorsusedto obtaincompany informationfrom Hooverscould
rely onamostlyregularformatin whichto find therelevantinforma-
tion. Informationextractorsfrom suchautomaticallygeneratedtext
areusuallycalledwrappers.

Varioussimple wrapperswerewritten to extract the featuresfrom
the Hoovers’ pagesfor eachcompany. From the Hoovers’ Cap-
sulepageweextractedhoovers-sector, hoovers-industry ,hoovers-
type, addressandsomeof thevaluesfor officers, competitor and
subsidiary. Whenavailable,we extractedvaluesfor products, au-
ditors, competitors; andrevenue, net-income, net-profit andem-
ployeesfor all theyearslisted.

2.3 Abstracted features
Weaugmentedtheseextractedfeatureswith somenew featuresbuilt
from them. Eight of the featureswe addeddescribedrelationships
betweencompaniesbasedoncross-referencingfeatures,suchasshare-
officers andsame-state, andwereattemptsto give our datamining
algorithmssomebackgroundknowledgeaboutsomerelationships
webelievedmight beusefulwhensearchingfor regularities.

We alsoaddedfour otherfeaturesto discretizeour continuousfea-
tures(revenue,net-income, net-profit andemployees). Mostly these
wereaddedto allow oneof ourdataminingalgorithms,whichcould
notacceptcontinuousfeatures,to usediscretizedversionsof them.

3. DATA MINING ALGORITHMS
In our experimentsto find patternsin our knowledgebase,we used
severallearningalgorithms.Thefollowing sectiondescribeseachal-
gorithmandgivessomemotivationasto why thesealgorithmswould
beexpectedto performwell for our tasks.

Givenadatasetof informationoncompaniescollectedfromtheWeb,
our first questionis typical in DataMining contexts: Canwe learn



Feature Values Description
EXTRACTED FEATURES

performs-activity 8 Thetypesof activity thiscompanyengagesin.
links-to Companieswhosewebsitesarepointedto by thiscompany.

mentions Companieswhosenameoccursonthis company’sWebsite.
officers Officersof thiscompany.
sector 200 NaiveBayespredictedeconomicsectorof company.

coarse-sector 12 NaiveBayespredictedcoarse-grainedeconomicsector.
locations Derivedfrom a naive Bayesclassifieron smallregionsof text surroundingcountrynames

[8], andautoslog-basedrules[17].
url-country 39 Inferredfrom theURL domainnamewhereapplicable.

WRAPPED FEATURES

hoovers-sector 28 Sectorlistedon thecompany’sHooverspage.
hoovers-industry 298 Industrylistedonthecompany’sHooverspage.

hoovers-type 18 Public,private,schooletc.
address Addressaslistedonhoovers.

city, state Extractedfrom address.
competitor Companiesthatcompetewith thiscompany.
subsidiary Companieslistedassubsidiariesof thiscompany.

products 4648 Productcategoriesextractedfrom theproductspage.
officers Officerslistedon theHooverspage.

auditors 266 Companyauditors.
revenue Revenuedatafor up to thelast10 years.

net-income Net Incomedatafor up to thelast10 years.
net-profit NetProfitdatafor upto thelast10years.

employees Numberof employeeseachyearfor up to thelast10 years.
ABSTRACTED FEATURES

same-state Companiesin thesamestateasthiscompany.
same-city Companiesin thesamecity asthiscompany.

share-officers Companiesthathaveofficersin commonwith this company.
mentions-same Companiesthatmentionsomecompanyalsomentionedby this company.

links-to-same Companiesthatlink to somecompanyalsolinkedto by thiscompany.
reciprocally-mentions Companiesmentionedby this company,who mentionthiscompany.

reciprocally-links Companieslinkedto by thiscompany, wholink to thiscompany.
reciprocally-competes Companieslistedasacompetitorof thiscompany, wholist thiscompanyasacompetitor.

revenue-binned 10 Revenuesfor eachof upto 10 yearsbinnedinto 10 equalsizedbins.
net-profit-binned 10 Netprofitssimilarly binned.

net-income-binned 10 Net incomesimilarly binned.
employees 10 Employeessimilarly binned.

Table1: Completelist of featuresused.

somethingaboutthe companiesrepresentedin our data,are there
any interesting,new thingsto befoundthere?Thatmotivatedtheuse
of an unsupervisedalgorithmfor discovering associationsin large
datasetsdescribedin Section3.1.

Inspectionof the dataand the featuresusedby the unsupervised
learningresultedin anapproachfor narrowing theproblemby defin-
ing potentiallyinterestingtarget concepts.For instance,onepoten-
tially usefulandlearnabletarget function is distinguishingbetween
companiesfrom differenteconomicsectors.In orderto find regular-
ities for a particulartarget concept,we usedsupervisedalgorithms
for learningpropositionalandfirst orderrules. We werealsointer-
estedin learningrulesthatcharacterizerelationshipsbetweencom-
panies.Someof theserelationshipswouldbeverynaturallycaptured
by first-orderrules,generalizingacrossrelationshsipsbetweenpairs
of companiesin ourdataset.Wehopedto discover rulesof theform
competitor(A,B) :- sector (A,S), sector (B,S), not links to (A,B), men-
tions (A,B).

Ourabstractedfeaturesdescribedin Section2.3werealsoanattempt
to encodesomeof thesekinds of information in ways that would
makeit easierfor propositionalrelationallearnersto capitalizeon
them.

3.1 Discoveringassociations

In orderto find associationsin the data,we first discretizedall the
continuousfeaturesandthenmappedeachfeaturetoasmany Boolean
featuresasit hasdistinctvalues.In thisway, weendedwith about26
000featuresandexamplesrepresentedwith sparsevectors.

UsingtheseBooleanfeaturesto representourdata,wegeneratedas-
sociationrulesby applyingtheApriori algorithm[1] usingthepub-
licly available implementation[4], a versionof which is incorpo-
ratedin the commerciallyavailabledatamining package”Clemen-
tine” [21]. In a typical dataminingsetting,it is assumedthatthereis
a finite setof literals (usuallyreferredto asitems)andeachexam-
ple is somesubsetof all theliterals.TheApriori algorithmperforms
efficentexhaustivesearchby usingdynamicprogrammingandprun-
ing the searchspacebasedon the parametersgiven by the userfor
minimumsupportandconfidenceof rules. This algorithmhasbeen
widely usedfor mining associationrulesover “basketdata”,where
literalsareall the itemsin a supermarketandexamplesaretransac-
tions(specificitemsboughtby customers).

An associationrule is an implication of the form ���	� , where
� and � aresubsetsof literals and ��
����� . We saythat the
rule holdswith confidencec if c% of examplesthat contain � also
contain � . The rule is said to have supports in the dataif s% of
examplescontain ����� . In otherwords,we cansay that for the
rule ����� , supportestimates����������� andconfidenceestimates
������� ��� .



3.2 Learning propositional rules
Decision treeshave often beenusedin DataMining taskssuchas
finding cross-sellingopportunities,performingpromotionsanalysis,
analyzingcreditrisk or bankruptcy, anddetectingfraud. We usethe
C5.0 algorithm(an extensionof C4.5proposedby Quinlan(1993))
whichgeneratesadecisiontreefor thegivendatasetby recursivepar-
titioning of thedata.Theparticularimplementationof C5.0we use
is partof thecommerciallyavailabledatamining package”Clemen-
tine”. In our experiments,we usethe InformationGain ratio asthe
splitting/selectioncriterion andperformpruningat different levels.
Sinceour goal is to discover patternsin our dataandnot to classify
or predictunseeninstances,we derivea rule setfrom adecisiontree
by writing a rule for eachpathin thedecisiontreefrom theroot to a
leaf.

3.3 Learning relational rules
Wearesearchingfor regularitiesin a relationalknowledgebase,and
thusableto benefitfrom usinga relationallearner. Quinlan’s FOIL

system[15, 16] is agreedycoveringalgorithmfor learningfunction-
freeHornclauses.FOIL induceseachHornclauseby beginningwith
an emptytail andusinga hill-climbing searchto addliterals to the
tail until theclausecoversonly (mostly)positive instances.Theeval-
uationfunction usedfor the hill-climbing searchis an information-
theoreticmeasure.

By usingthe relationaldescriptionof companiesin our knowledge
basedirectly, FOIL can use patternsin the relationshipsbetween
companiesin its searchfor interestingregularities. This is in con-
trastwith associationrulesanddecisiontreeswhich areconfinedto
usingthepropositionalisedversionsof ourknowledgebase.As with
decisiontrees,weusedFOIL in aclassification-orientedapproachto
datamining,giving it targetconceptsto learn.

4. EXPERIMENT AL RESULTS
Experimentswereperformedusingthefeaturesgivenin Section2 (in
somecasesusinga subsetof the features)andthe threealgorithms
describedin Section3. Sincewe are looking for interestingregu-
larities in thedata,we evaluatedthegeneratedmodelsbasedon the
coverageof thetrainingexamplesandby checkingthecontentof the
models.

Our first setof experimentsaimedat discoveringassociationsin the
datausingassociationrulesasdescribedin Section3.1. Thesecond
setof experimentsinvolved decidingon the target relationin order
to find rulesdescribingthetargetconcept.Weselectedthefollowing
target relations:hoovers-sector, hoovers-type,auditors, competi-
tor, share-officers,country, and state. We generatedpropositional
rulesusingDecisiontrees(seeSection3.2)andfirst orderrulesusing
thefirst orderrulelearningsystem(seeSection3.3).Thefindingsare
describedin therestof thisSection.

4.1 Apriori Experiments
Using associationrulesas describedin Section3.1. we generated
rules using all but the continuousfeatures. Using the default pa-
rametersetting(minimal supportof a rule setto 10% andminimal
confidenceof a rule setto 80%)we obtained2658associationrules.
Inspectionof the mostfrequentrulespointedout the needfor data
cleaning.[7] point out thatdatacleaningis a significantstepin any
data-miningapplication. In our case,wheresomeof our features
are known to be noisy, closer inspectionof a very high-accuracy
rule revealedthesourceto besystematicerror in oneof our extrac-
tors. (“Human Resources”was mistakenlyextractedas an officer

of companiesin many instances).In this way, the data-miningap-
proachlendsitself to a two-phaseapproach,in which we canalso
improve our extractors. After removing rules that containedsome
of thewrongly extractedfeatures,weendedup with 254association
rules.Below aresomeexamplesof theruleswe foundamongthem.
For eachrule we give its confidenceexpressedaspercentageof ex-
amplescontainingall the rule features,followed by the percentage
of examplesfor which theassociationholds(support,confidence).

Amongthehighestconfidencerulesarethoserelfectingassociations
betweenour Extractedfeatures. Examplesare the following rules
thatcanintuitively beunderstoodascompanieswith documentation
on their sites,that either are locatedin USA or providetechnical
assistance,are involvedin sales.

performs-activity=sell :- locations=united-states,
links-to=adobe-systems-incorporated (10.8%, 93.0%)

performs-activity=sell :- performs-activity=technical-assistance,
links-to=adobe-systems-incorporated (11.9%, 91.1%)

We checkedour databasefor instanceslinking to adobe-systems-
incorporated, andconfirmedthat this is mostly dueto web pages
linking to PDF files (documentation),andalsolinking to Adobeto
provide visitors with the possibility of readingtheir documentation
(by downloadingaPDFacrobatreader).

A secondinterestingregularity is that in our data,most companies
locatedin Japaneither sellor perform research (seethetwo rules
below), while companieslocatedin USA eithersellor supply.

performs-activity=sell :- locations=japan (14.5%, 90.8%)
performs-activity=research :- locations=japan (13.2%, 82.2%)

We confirmedthat aboutonethird of our companiesarelocatedin
USA (37%)andamongthemabout70%performresearch(verified
by runningwith a lower confidencethresholdthanourdefault).

performs-activity=research :- locations=united-states (26.9%, 72.5%)

Runningtheassociationrulesalgorithmwith lowersupportandcon-
fidence(support5%,confidence50%),revealedthatcompaniesmen-
tioning software on their Web pagesare mostly located in the
USA. Wealsofoundthatcompaniesperformingsales,supplyandre-
searchthathavedocumentation(link toadobe-systems-incorporated)
ontheirWebpagesareprobably(61.2%)locatedin USA(thesecond
rule below). The third rule below canbe intuitively understoodas
mostcompaniesin the technologysectorare locatedin the USA.

locations=united-states :- performs-activity=supply,
performs-activity=expertise, mentions=software (5.3%, 64.0%)

locations=united-states :- performs-activity=sell,
performs-activity=supply, performs-activity=research,
links-to=adobe-systems-incorporated (7.0%, 61.2%)

locations=united-states :- performs-activity=supply,
coarse-sector=technology-sector (5.8%, 50.1%)

Associationrulesinvolving financialfeatures(revenue,incomeand
profit) showedthatmostof the companiesin our datasetarestable
in their finances. For instance,thefollowing ruleshowsthatacom-
pany with high revenuein 1993–1996is highly probable(99.5%)to
haveahighrevenueagainin 1997.

revenue-1997=high :- revenue-1996=high, revenue-1995=high,
revenue-1994=high, revenue-1993=high (5.0%, 99.5%)

In order to get somemore associationswith lower confidencefor
somefeatureswe consideredespeciallyinteresting,we reducedthe



featureset to the following four features: url-country , hoovers-
sector! , competitor andauditors. After transformingthemtoBoolean
featureswe had3532features.Runningtheassociationrulesalgo-
rithm onthisreducedsetof featureswith low supportandconfidence
(support1%, confidence10%)resultedin 38 ruleswith this support
andconfidenceor higher.

Suprisingly, thereis an associationbetweenauditors andhoovers-
sector. The following rules give threeconclusionssupportedby
about1-2 % of our data. First, companiesin computer-software-
&-services have PricewaterhouseCoopers (20.9%) or Ernst &
Young(14.3%)astheir auditor . Second,companiesin diversified-
serviceshavePrice-WaterhouseCoopers(15.7%) or Arthur An-
dersen(13.9%) astheir auditor . Third, companiesin drugs have
Ernst & Young(26.8%) astheir auditor .

auditors=pricewaterhousecoopers-llp :-
hoovers-sector=computer-software-&-services (1.7%, 20.9%)

auditors=ernst-&-young-llp :-
hoovers-sector=computer-software-&-services (1.2%, 14.3%)

auditors=pricewaterhousecoopers-llp :-
hoovers-sector=diversified-services (1.2%, 15.7%)

auditors=arthur-andersen-llp :-
hoovers-sector=diversified-services (1.1%, 13.9%)

auditors=ernst-&-young-llp :-
hoovers-sector=drugs (1.0%, 26.8%)

We canalsoseeassociationsbetweenhoovers-sector andcompeti-
tors asfollows. About half of the companiesthat competewith
microsoft-corporation are in computer-software-&-services(the
first rule)and about a quarter of companiesthat arein computer-
software-&-servicescompetewith microsoft-corporation.

hoovers-sector=computer-software-&-services :-
competitor=microsoft-corporation (2.1%, 54.9%)

competitor=microsoft-corporation :-
hoovers-sector=computer-software-&-services (2.1%, 25.7%)

The following rules show a competitorwhich is a good predictor
for differenthoover-sectors supportedby about1% of our compa-
nies.They canbeunderstoodasfollows: most companiescompet-
ing with Conagra inc., KMart Corporation and BP Amoco p.l.c.
are in food-beverage-&-tobacco,retail and energy, respectively.

hoovers-sector=food-beverage-&-tobacco :-
competitor=conagra-inc (1.0%, 89.8%)

hoovers-sector=retail :-
competitor=kmart-corporation (1.0%, 75.0%)

hoovers-sector=energy :-
competitor=bp-amoco-p.l.c. (1.1%, 73.0%)

4.2 DecisionTrees
Associationrulesallow ustofindarbitraryassociationsbetweenmany
features,at thecostof representationalcomplexity. If wearewilling
to decideon a target functionperrun,a decisiontreelearnercanex-
ploremorecomplex rules.In thedecisiontreesshownin thissection,
thefirst numberin bracketsrefersto thenumberof examplescovered
by the rule. Thesecondshows the fractionof themwhich have the
target labelshown.

We learneda decisiontree to predict the economicsectoras de-
scribedby Hoovers.Oneof our predictorswasanaiveBayesclassi-
fier for economicsector, usingbotha coarseandfiner-grainedclas-
sificationwhich werenot identicalto Hoovers’. Note that this ap-
proachcouldallow usto improveontheaccuracy of aclassifierbased
on thewebpagesby usingotherfeatures.It alsoallows usto learn
a mappingbetweensimilar featuresderived from differentsources,
whichcanthenpermitthetwo featuresto beusedidentically.

city Atlanta
revenue1996 "$#&%('*),+.- Diversified Services (28, 0.179)
revenue1996 -/%0'*)�+�- Computer Software & Services (20, 0.2)

city Houston
coarse-sector [basic-materials, capital-goods, transpor tation]+.- Manufacturing (10, 0.3)
coarse-sector [financial, healthcare, technology]+�- Computer Software & Services (21, 0.238)
coarse-sector [conglomerates, consumer-cyclical,

consumer-non-cyclical, energy, services, utilities]+�- Energy (49, 0.49)
city Dallas

net income1999 "1#2)435+.- Health Products & Services (25, 0.2)
net income1999 -�)436+�- Leisure (25, 0.2)

city Minneapolis
employees1996 "$#.70' 89+�- Diversified Services (23, 0.174)
employees1996 -/70' 89+�- Manufacturing (20, 0.3)

Figure2: Partial decisiontreefor Hooverssectorusingcombina-
tion of learned featuresextracted from web-pagesand symbolic
featureswrapped from the Hooversweb-site.

coarse-sector [utilities] +.- Utilities (69, 0.623)
...
coarse-sector [energy]

hoovers type NIL +.- Energy (39, 0.897)
...

hoovers type Public
employees1993 "1# 4.6 +.- Energy (42, 0.357)
employees1993 - 4.6 +�- Telecommunications (20,0.4)

coarse-sector Services
sector Communications-ser vices

net income1999 "$# 1.8 +.- Media (38, 0.342)
net income1999 - 1.8 +�- Telecommunications(33,0.333)

...
coarse-sector Technology

sector Waste-management-services
net income1998 "$# 4 +.- Computer Software

& Services (38, 0.421)
net income1998 - 4 +.- Diversified Services (22,0.227)

coarse-sector Financial
revenue1992 "$# 4.5

sector Investment-services
employees1993 "$# 0 +�- Financial Services (35,0.429)
employees1993 - 0 +.- Banking (23, 0.739)

revenue1992 - 4.5 +.- Financial Services (62, 0.548)
coarse-sector Transpor tation

sector Misc-transportation
revenue1996 "$# -1.2 +�- Telecommunications(21,0.286)
revenue1996 - -1.2

net income1996 "$# 22 +�- Diversified Services (31, 0.323)
net income1996 - 22 +.- Manufacturing (22,0.227)

sector Railroad
employees1999 "1# 36.4

net income2000 "$# 3.1 +.- Media (33, 0.152)
net income2000 - 3.1 +�- Drugs (21, 0.238)

employees1999 - 36.4 +.- Transpor tation (49,0.184)

Figure3: Partial decisiontreefor Hooverssectorusingcombina-
tion of learned featuresextracted from web-pagesand symbolic
featureswrapped from the Hooversweb-site.For this tr eeweex-
cluded the city feature to focuson learning rules to improveour
web-pagebasedsectorclassifiers.

The resultingdecisiontree is shown in Figure2. Interestingly, de-
pendingon thecity thecompany is locatedin, differentfeaturesare
then usedto predict the sector. For Atlanta, computercompanies
havea higherrevenuethandiversifiedservicescompanies(samefor
Chicago;not shown). For Houston,dependingon thecoarse-sector
(basedon noisy Naive Bayesclassificationof the company web-
pages),wepredicteitherManufacturing,ComputerSoftware& Ser-
vices,or Energy. For Dallas,mostHealthcompaniesarenon-profit
andthushavea lower incomethanleisurecompanies.

Next we excludedthecity featureto focuson learningrulesto im-
prove our web-pagebasedsectorclassifiers.The resultingdecision
treeis shown in Figure3. Note that Telecommunicationshasmore
employeesthanEnergy andcanhelpweedout incorrectclassifica-
tions in the coarse-sectorpredictionfor energy. Wherethe Naive
Bayesclassifierpredictscommunications-services,incomecan be
usedto distinguishbetweenMedia(lower-income)andTelecommu-
nications(high). WheretheNaiveBayesclassifierpredictsinvestment-
services,employeescan be usedto distinguishbetweenFinancial
Services(lower) and Banking (high). This decisiontree also finds
irregularities in the Naive Bayespredictionsfor the transportation



US Company "1# 0 +�- Public (932, 0.838)
US Company - 0

net profit2000 "$# 0
revenue1998 "$# 0.2

hoovers sector Aerospace/Defense +.- Subsidiar y (6, 0.5)
hoovers sector

Computer Software & Services +.- Private (51, 0.725)
hoovers sector Drugs +�- Private (14, 0.571)
hoovers sector Financial Services +.- Private (39, 0.564)
hoovers sector

Food Beverage & Tobacco +.- Private (62, 0.629)
hoovers sector

Health Products & Services +.- Not-for-Profit (40, 0.475)
hoovers sector Leisure +�- Private (84, 0.679)

...
hoovers sector

Telecommunications +.- NIL (28, 0.536)
hoovers sector Diversified Services

sector Immigration-law +�- Foundation (24, 0.333)
sector International-law +.- Partnership (18, 0.833)
sector Maritime-law +.- Partnership (11, 0.909)

Figure 4: Partial decisiontreefor Hooverstype using combina-
tion of learned featuresextracted from web-pagesand symbolic
featureswrapped from the Hooversweb-site.

sector(lastrule in thetree).

Our next decisiontreetarget function washooverstype, which at-
temptsto learnrulesto predictHoovers’ classificationof companies
into Private,Public,Not for Profit, etc. We definedthe featureUS
Company for this decisiontree,which is definedto be a company
whoseaddressgiven by Hooversis a statein theUS. The resulting
treeis shown in Figure4. In our data-set,thebulk of non-UScom-
paniesarepublicly traded. For US companies,thosein the health
servicessectorarenon-profit,while otherswith low profit andrev-
enueareprivate. In addition, unlessthe sectoris DiversifiedSer-
vices,thenif predictedsectorpredictedby thenaiveBayesclassifier
is law(immigration,maritime)theneitherit is eithera foundation,or
apartnership.

The final decisiontree learning task we undertookwas to predict
a compositefeaturehq-statecountry, for which posiblevaluesare
all US States,and Country names,as definedin the Hoovers ad-
dressinformation. One of our predictorswas url-country, which
we derive from the company’s URL, if it is indicative of a coun-
try. This is derived from the internetstandardRFC1591basedon
ISO 3166two-lettercountrycodes.Our decisiontreevalidatesthis
extraction method,showing that it alwayscorrectly predictscom-
paniesheadquarteredin Australia,Japanandthe United Kingdom.
WhentheURL did notprovideuswith theurl-country thetreeuses
otherfeaturesto predicthq-statecountry. The first featureselected
in hoovers-type; whenthisis NIL thetreeusesthehoovers industry
feature.

Notethepreponderanceof medicalcompaniesandindustriesin Cal-
ifornia, andthefact thathigh-profittechnologycompaniesarebased
in Massachusetts(perhapswell establishedcompanies)while lower
profit companies(say, start-ups)aremorelikely to beheadquartered
in California. Our data-miningalsorevealsthelocationsof banking
centersaroundtheUS,aswell aspickinguponexpectedcorrelations
suchasgamblingin Nevada,oil in Texas,high-techindustriesin Cal-
ifornia, andbanking,fashionandadvertisingin New York. Thetree
is shown in Figure5.

4.3 FOIL Experiments
PropositionalrulesusingFOIL wereusedto investigatelearningrule-
setsfor two broadclassesof target function. The first, andsimpler
computationally, classwereunaryrelations.Specifically, we chose
to learnrule-setsfor eachvalueof hoovers-sector andauditors of
eachcompany.

url-countr yAU +.- Australia (13, 1.0)
...
url-countr yJP +�- Japan (140, 1.0)
url-countr yUK +&- United Kingdom (67, 1.0)
url-countr yNIL
hoovers type Cooperative +.- CA (27, 0.148)

hoovers type Division of +.- CA (15, 0.333)
hoovers type Government-owned +�- CA (23, 0.174)
hoovers type Joint Venture of +&- NY (15, 0.2)
hoovers type Mutual Company +�- Canada (10, 0.2)
hoovers type Not-for-Profit +.- TX (42, 0.143)
hoovers type Partnership +.- NY (45, 0.356)
hoovers type Private +�- CA (682, 0.196)
hoovers type Public +.- Canada (395, 0.301)
hoovers type School +.- TX (13, 0.231)
hoovers type Subsidiar y +.- CA (218, 0.165)

...
hoovers type NIL

hoovers industry Advertising +.- NY (7, 0.429)
hoovers industry Aerospace/Defense - Products +�- FL (15, 0.2)
hoovers industry Agricultural Operations & Products +�- CA (8, 0.5)
hoovers industry Apparel - Clothing +.- NY (15, 0.467)
hoovers industry Banking - Mid-Atlantic +�- MD (10, 0.4)
hoovers industry Banking - Midwest +�- IL (37, 0.216)
hoovers industry Banking - Northeast +.- PA (30, 0.367)
hoovers industry Banking - Southeast +�- GA (29, 0.276)
hoovers industry Banking - Southwest +.- TX (7, 0.714)
hoovers industry Banking - West +.- CA (27, 0.704)
hoovers industry Biotechnology- Medicine +�- CA (62, 0.371)
hoovers industry Biotechnology- Research +.- CA (8, 0.625)
hoovers industry Corporate Professional & Financial Software +.- CA (43, 0.209)
hoovers industry Engineering Scientific & CAD/CAM Software +�- CA (10, 0.6)
hoovers industry Gambling Resorts & Casinos +�- NV (12, 0.667)
hoovers industry Investment Banking & Brokerage +�- NY (20, 0.4)
...
hoovers industry Medical Appliances & Equipment +�- CA (43, 0.349)
hoovers industry Medical Instruments & Supplies +.- CA (28, 0.286)
hoovers industry Networking & Communication Devices +�- CA (25, 0.52)
hoovers industry Oil & Gas Exploration & Production +&- TX (34, 0.441)
hoovers industry Oil & Gas Services +�- TX (18, 0.722)
hoovers industry Semiconductor - Integrated Circuits +.- CA (11, 0.636)
hoovers industry Semiconductor - Specialized +�- CA (11, 0.636)
hoovers industry Semiconductor Equipment & Materials +.- CA (27, 0.444)
hoovers industry Wireless Satellite & Microwave Communications Equipment +.- CA (17, 0.412)
hoovers industry Information TechnologyConsulting Services

net profit1996 "1# 0.5 +�- CA (23, 0.261)
net profit1996 - 0.5 +.- MA (27, 0.185)

Figure5: Partial decisiontreefor Hooversstateand country us-
ing combination of URL basedpredictor, and symbolic features
wrapped from the Hoovers web-site. Usestype of company as
a feature, to producea correspondencebetweenUS-statesand
industry sectors.

For hoovers-sector we found a rule that can intuitively be readas
companiesheadquarteredsomewhereother than Fremont com-
peting with “Computer AssociatesInter national” are in thecom-
puter software& servicessector.

computer-software-&-services(A) :- hq-city(A,B),
B :<; fremont, competitor(A,C),
hq-city(C, islandia), not(employees binned(A,?,?)).

In ourknowledgebase,thisruleis correctfor 51companiesanddoes
not matchany othercompanies.A little furtherinvestigationreveals
that“ComputerAssociatesInternational”is theonly company in our
knowledgebaseheadquarteredin Islandia.

A hoovers-sector rule with lower coverage,but drawing on some
of our extractedfeatures,covers8 companiescorrectlyandnonein-
correctlyin our knowledgebase.Therule canintuitively be under-
stoodascompaniesheadquartered in New York, that are not in
natural-gas-industry nor technology-sector, are in the media in-
dustry.

media(A) :- hq-city(A,new-york), sector(A,B),
B :<; natural-gas-industry, coarse-sector(A,C),
C :=; technology-sector, competitor(?,A),
performs-activity(A,?),not(products(A,?)), not(locations(A,?)).

Twootherhoovers-sectorruleuseall threekindsof features,namely
sector and locations (extractedfrom web-pages),auditors (from
wrappedHooversweb-site),andreciprocally-competes(anAbstracted
feature).They all usethelearnedsectorNaiveBayesmodelandre-
fine it with knowledgeabouttypeof company or company auditors.



Notethattheunboundvariablein locations(A,?) andreciprocally-
competes(A,?)> canbereadashad a location we extracted from
the web-siteandhasa company listed on its Hooverspagesthat
also lists it asa competitor. (Note thatnot all Hooverscompetitor
relationshipsarereciprocalin this way). The first rule matches26
companiescorrectlyandoneincorrectly, while the secondmatches
eightcompaniescorrectlyandnoneincorrectly.

metals-&-mining(A) :-
sector(A,gold-and-silver-industry), locations(A,?),
type(A,public).

retail(A) :- sector(A,retail-apparel-industry),
reciprocally-competes(A,?),
auditors(A,deloitte-&-touche-llp).

Next we learnedrule-setsto predicttheauditors of a company. The
highestcoveragerule we foundmatchedonly four companiesin our
dataset,but all of themcorrectly. It canbe intuitively understood
ascompaniesheadquartered in Madrid having listed historical
financial information useArthur Andersenastheir auditor.

arthur-andersen(A) :- hq-city(A,madrid), net profit(A,?,?).

Finally, weattemptedto learnsomebinaryrelations.Thispresented
somepracticaldifficulties (due to algorithm complexity) and also
turnedupsomeproblemsin ourknowledgebase.Ourfirst binarytar-
getrelationwascompetitor. To cut down thecomputation,weused
onlyhq-city, url-country , links-to andhoovers-sector asbackground
features.Reassuringly, thatsimplerundiscoveredthefollowing reg-
ularity matching11407companiescorrectlyandnoneincorrectly. In
English,this rule statesthat two companiesin the samesectorare
competitors.

competitor(A,B) :- A � � B,
hoovers-sector(A,C), hoovers-sector(B,C).

5. DISCUSSION
We have demonstratedthat we candiscover interestingregularities
aboutcompaniesby extracting,andthenmining informationon the
Web. However, difficulties arosein this processthat are deserv-
ing of noteand discussion.Onedifficulty we encounteredwas in
the errorful natureof our facts. Most traditionalprocessesof data
mining include an extensive phaseof datacleaning. In our sce-
nario, datacleaningwasmore problematicthanusualbecausewe
have additionalsourcesof noisefrom the imperfectionof our fea-
ture extractors. For examplethe company-mentions-companyre-
lation was over-populatedby matchingon suchgenericshortened
company namessuchas“The Limited”. Our datacleaning/mining
wentthroughseveraliterations,whereour mining algorithmswould
discover regularities that were clearly a result of insufficient data
cleaning. When automaticallyconstructingknowledgebaseswith
imperfectextractors,the datacleaningeffort will necessarilybe of
this iterative pattern.

Additionally we note the needfor featureselection,especiallyfor
relationallearning.Boththememoryusageandruntimeof theFOIL
algorithmprovedto beproblematicfor thesizeof ourextracteddata
set. Additionally, several of the featureswereprominentin terms
of numberof literals,but low oncontent.Thesesuggesttheneedfor
featureselectiontechniques.Onepossibilityis to performatwo-pass
featureselectionandlearningprocess.First,selectrelatively simple,
unarytargetrelationsto learn.Thisallowsrulelearningalgorithmsto
performefficiently, asmany fewerconstructednegativeexamplesare
required.Theresultsof this first-passlearningwill suggesta subset
of featuresthatareusefulfor datamining. Thus,we usethe results
of thefirst-passlearningnot for therulesthemselves,but to suggest

thefeaturesto use.Thenusingonly asubsetof thefeatures,run the
expensive, binary relationdiscovery. This processproved effective
for ouruseof FOIL.

Oneresultwe werepleasedto observe wasthe interactionbetween
thesymbolicfeaturesandthestatistically-derived(naiveBayes)fea-
tures.Basedonthetext of acompany’swebpages,thesectorfeature
predictsanindustrysector. However, asshown in Section4.2,learn-
ing theHoovers-sector involvedmorethanjustmappingfromsector
to Hoovers-sector. Thedecisiontreewasableto identify regionsof
theclassificationspacefor which naive Bayeswasa poorpredictor,
andcorrectfor it with the useof symbolicfeatures.This paradigm
of combiningstatisticalandsymbolicfeaturesmay prove usefulas
thereis oftena collectionof bothsymbolicandtext datawithout a
clearmethodof combination.Additionally, this pointsthe way for
deriving valuesfor featuressuchasHoovers-sectorfor companies
whicharetoosmallto belistedon corporateinformationwebsites.

6. FURTHER WORK
Theresultsdescribedin this papersuggesta numberof researchdi-
rections,impactingeachof informationextraction,machinelearning,
anddata-miningfrom text. Theuseof disparateknowledgesources
lendsitself to improvementof thelessaccuratefeaturesthroughthe
useof themoreaccurateones.For informationextraction,wecould
usethe informationfrom wrappedweb-sitesasa sourceof training
datato improve our extractors.This couldbe beneficialbothat the
sentencelevel, giving usaway of labelingthecorpuswebuild from
crawling acompany web-site,andattheweb-siteclassificationlevel,
giving usa wayof adaptinga text classifiertrainedon a slightly dif-
ferenttrainingset.In additionwecanaugmentourextractorstooper-
ateonboththetext andsymbolicfeatures,providing meta-extractors
thatlook notonly atwebpages,but alsousebackgroundknowledge.

An additionaldirectionis greaterautomationof thedata-cleaningof
extractedfeatures.We discoveredanomaliesin a relatively ad hoc
mannerduringthework describedhere.By runningdata-miningas
a form of sanity-checkat thetime of extractorconstruction,we can
detectandhenceavoid errorswhich arerare in general,but which
occur frequentlyin a large enoughcollection. This augmentsany
testingwedo usingapre-labeledtestset,sinceit permitssystematic
errortestingin enormous,previously unseensetsof data.

Someof the actualinformationextractionwe performedwasat the
level of keywordspotting.Extendingthisto usemachinelearningon
dataeitherhand-labeled,or labeledin a semi-supervisedmannerus-
ing Hooversdatacanprovide richerandmorereliablefeatures.For
data-mining,wefoundthattheunsupervisedexploratoryapproachof
Apriori wasattractive, but weakin representation.Combiningunsu-
pervisedsearchwith a decisiontreeor relationallearnercouldgive
us greaterpower in data-mining.Suchan approachwould needto
be both incrementalanditerative, incorporatingfeatureselectionas
a sub-task,in order to renderit computationallytractable. Due to
time constraintswe did not run our crawler on all companiesrepre-
sentedon theHooversweb-site.We couldalsorun thesealgorithms
on companiesnot found on Hoovers,by runningthe crawler more
generally. Coupledwith datacleaning,we maybe ableto perform
betterdata-mining,with muchthesameexperimentalset-up.In ad-
dition, sincewe have learnedruleswhich predictcertainfeaturesin
theabsenceof others,it wouldbeinstructive to try usingthoserules
to relabelcertainpartsof ourdata,andre-runtheminingalgorithms.
In this way we canview our knowledge-baseat any periodin time
as a collection of knowledgein flux, as we gain betterand better
understandingof patternsthatunderlythedata.
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