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Abstract

This paper proposes the use of maximum en-
tropy techniques for text classification. Maxi-
mum entropy is a probability distribution esti-
mation technique widely used for a variety of
natural language tasks, such as language mod-
eling, part-of-speech tagging, and text segmen-
tation. The underlying principle of maximum
entropy is that without external knowledge,
one should prefer distributions that are uni-
form. Constraints on the distribution, derived
from labeled training data, inform the tech-
nique where to be minimally non-uniform. The
maximum entropy formulation has a unique so-
lution which can be found by the improved it-
erative scaling algorithm. In this paper, max-
imum entropy is used for text classification by
estimating the conditional distribution of the
class variable given the document. In experi-
ments on several text datasets we compare ac-
curacy to naive Bayes and show that maximum
entropy is sometimes significantly better, but
also sometimes worse. Much future work re-
mains, but the results indicate that maximum
entropy is a promising technique for text clas-
sification.

1 Introduction

A variety of techniques for supervised learning algo-
rithms have demonstrated reasonable performance for
text classification; a non-exhaustive list includes naive
Bayes [Lewis, 1998; McCallum and Nigam, 1998; Sa-
hami, 1996, k-nearest neighbor [Yang, 1999], support
vector machines [Joachims, 1998; Dumais et al., 1998],
boosting [Schapire and Singer, 1999] and rule learn-
ing algorithms [Cohen and Singer, 1996; Slattery and
Craven, 1998]. Among these, however, no single tech-
nique has proven to consistently outperform the others
across many domains.

This paper explores the use of maximum entropy for
text classification as an alternative to previously used
text classification algorithms. Maximum entropy has al-
ready been widely used for a variety of natural language
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tasks, including language modeling [Chen and Rosenfeld,
1999; Rosenfeld, 1994], text segmentation [Beeferman et
al., 1999], part-of-speech tagging [Ratnaparkhi, 1996,
and prepositional phrase attachment [Ratnaparkhi et al.,
1994]. Maximum entropy has been shown to be a viable
and competitive algorithm in these domains.

Maximum entropy is a general technique for estimat-
ing probability distributions from data. The over-riding
principle in maximum entropy is that when nothing is
known, the distribution should be as uniform as possible,
that is, have maximal entropy. Labeled training data
is used to derive a set of constraints for the model that
characterize the class-specific expectations for the distri-
bution. Constraints are represented as expected values
of “features,” any real-valued function of an example.
The improved iterative scaling algorithm finds the max-
imum entropy distribution that is consistent with the
given constraints.

In our text classification scenario, maximum entropy
estimates the conditional distribution of the class label
given a document. A document is represented by a set of
word count features. The labeled training data is used
to estimate the expected value of these word counts on
a class-by-class basis. Improved iterative scaling finds a
text classifier of an exponential form that is consistent
with the constraints from the labeled data.

Our experimental results show that maximum entropy
is a technique that warrants further investigation for text
classification. On one data set, for example, maximum
entropy reduces classification error by more than 40%
compared to naive Bayes. On other data sets, basic max-
imum entropy does not perform as well as naive Bayes.
Here, there is evidence that basic maximum entropy suf-
fers from overfitting and poor feature selection. When
a prior is applied to maximum entropy, performance is
improved in these cases. Overall, maximum entropy per-
forms better than naive Bayes on two of three data sets.
Many areas for further investigation exist which may im-
prove performance even further. These include more ap-
propriate feature selection, using bigrams and phrases as
features, and adjusting the prior based on the sparsity
of the data.

This paper proceeds as follows. Section 2 presents the
general framework for maximum entropy for estimating



conditional distributions. Then, the specific application
of maximum entropy to text classification is discussed
in Section 3. Related work is presented in Section 4.
Experimental results are presented in Section 5. Finally,
Section 6 discusses plans for future work.

2 Maximum Entropy

The motivating idea behind maximum entropy is that
one should prefer the most uniform models that also
satisfy any given constraints. For example, consider a
four-way text classification task where we are told only
that on average 40% of documents with the word “pro-
fessor” in them are in the faculty class. Intuitively, when
given a document with “professor” in it, we would say
it has a 40% chance of being a faculty document, and
a 20% chance for each of the other three classes. If a
document does not have “professor” we would guess the
uniform class distribution, 25% each. This model is ex-
actly the maximum entropy model that conforms to our
known constraint. Calculating the model is easy in this
example, but when there are many constraints to satisfy,
rigorous techniques are needed to find the optimal solu-
tion. Csiszar [1996] provides a good tutorial introduction
to maximum entropy techniques.

In its most general formulation, maximum entropy can
be used to estimate any probability distribution. In this
paper we are interested in classification; thus we limit
our further discussion to learning conditional distribu-
tions from labeled training data. Specifically, we learn
the conditional distribution of the class label given a
document.

2.1 Constraints and Features

In maximum entropy we use the training data to set con-
straints on the conditional distribution. Each constraint
expresses a characteristic of the training data that should
also be present in the learned distribution. We let any
real-valued function of the document and the class be a
feature, f;(d,c). Maximum entropy allows us to restrict
the model distribution to have the same expected value
for this feature as seen in the training data, D. Thus, we
stipulate that the learned conditional distribution P(c|d)
must have the property:

ﬁ > fild,e(d) =Y P(d) > _P(cld)fi(d,c). (1)
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In practice, the document distribution P(d) is un-
known, and we are not interested in modeling it. Thus,
we use our training data, without class labels, as an ap-
proximation to the document distribution, and enforce
the constraint:
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Thus, when using maximum entropy, the first step is
to identify a set of feature functions that will be useful

for classification. Then, for each feature, measure its
expected value over the training data and take this to
be a constraint for the model distribution.

2.2 Parametric Form

When constraints are estimated in this fashion, it is guar-
anteed that a unique distribution exists that has maxi-
mum entropy. Moreover, it can be shown [Della Pietra
et al., 1997) that the distribution is always of the expo-
nential form:

P(cld) = Z(l 3 OP(30 fild, ), (3)

where each f;(d, c) is a feature, \; is a parameter to be
estimated and Z(d) is simply the normalizing factor to
ensure a proper probability:

2(d) = Y exp(Y_ Aifild. ) (4)

When the constraints are estimated from labeled
training data, the solution to the maximum entropy
problem is also the solution to a dual maximum likeli-
hood problem for models of the same exponential form.
Additionally, it is guaranteed that the likelihood surface
is convex, having a single global maximum and no lo-
cal maxima. This suggests one possible approach for
finding the maximum entropy solution: guess any initial
exponential distribution of the correct form as a start-
ing point; then, perform hillclimbing in likelihood space.
Since there are no local maxima, this will converge to
the maximum likelihood solution for exponential models,
which will also be the global maximum entropy solution.

2.3 Improved Iterative Scaling

In this section, we briefly outline the derivation of im-
proved iterative scaling (IIS), a hillclimbing algorithm
for calculating the parameters of a maximum entropy
classifier given a set of constraints. We also describe
the algorithmic details of this procedure. A complete
description and derivation of improved iterative is pre-
sented by Della Pietra et al. [1997]. This presentation
follows that of Berger [1998].

IIS performs hillclimbing in parameter log likelihood
space. Given a set of i.i.d. training data D, we can
calculate the log likelihood of an exponential model, A,
using Equation 3:
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At each step IIS must find an incrementally more likely
set of parameters. Since the likelihood function is con-
vex, if we can guarantee that IIS succeeds in improving



the likelihood, then we know it will converge to the glob-
ally optimal set of parameters—those that are both the
maximum likelihood solution for the parametric form,
and the solution with the maximal entropy.

We start from any initial vector of parameters A; at
each step we improve A, by setting it equal to A + A,
which will have a higher likelihood. Thus, at each step,
we want to find a A such that the difference in likelihoods
is positive:

I(A+ A|D) — I(AID) > 0. (6)
Using the inequality —log(z) > 1 — x and Jensen’s

inequality, we can bound this expression from below with
an auxiliary function we call B:

I(A+AD)—I(AD) > B=
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where f%(d,c) is the sum of all features in training
instance d:

c) = Zfi(d, c). (8)

We can guarantee an increase in likelihood if we can
find a A such that B is positive. We can find the best A
by differentiating B with respect to the change in each
parameter ¢; in turn and solving for the maxima:

= X (i)
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Note that it is straightforward to set this equal to
zero and solve for the increment d; for each parameter
Ai. In the case where f%(d,c) is constant for all d and
¢ (as in experiments in this paper), this can be solved
in closed-form. Otherwise, this can be solved with a nu-
meric root-finding procedure, such as Newton’s method.
In this case, the polynomial is guaranteed to have only
one positive root.

This analysis shows that we can find at each hillclimb-
ing step changes to each \; that improve the model like-
lihood. Since the likelihood is convex, this hillclimbing
is guaranteed to converge to the global maximum.

This is the foundation for the improved iterative scal-
ing algorithm, outlined in Table 1. At each step of the
iteration we need to estimate class labels P (c|d) of all
documents with the current model. Then, using the class
labels we calculate improved model parameters and it-
erate.

e Inputs: A collection D of labeled documents and a
set of feature functions f;.

e Set the constraints (Equation 2). For every feature
fi, estimate its expected value on the training doc-
uments.

e Initialize all the \;’s to be zero.

e Iterate until convergence:

e Calculate the expected class labels for each doc-
ument with the current parameters, Pa(c|d)
(Equation 3).

e For each parameter \;:

o Set % = 0 and solve for ¢; (Equation 9).
e set \; = \; +6;

e Output: A text classifier that takes an unlabeled

document and predicts a class label.

Table 1: An outline of the Improved Iterative Scaling
algorithm for estimating the parameters for maximum
entropy.

2.4 Gaussian Prior

Maximum entropy can suffer from overfitting. The con-
straints are estimated from labeled training data, and,
like other learning algorithms, when data is sparse, over-
fitting can occur. With too little data, the expected
value of a feature in the training data may be far from
the true value. By introducing a prior on the model,
overfitting can be reduced and performance improved.
To integrate a prior into maximum entropy, we use
maximum a posteriori estimation for the exponential
model, instead of maximum likelihood estimation. We
use a Gaussian prior for the model, with the mean at
zero, and a diagonal covariance matrix. This prior fa-
vors feature weightings that are closer to zero, that is,
are less extreme. The prior probability of the model is
just the product over the Gaussian of each feature value
\; with variance 012:
_)\2
2 2)

(10)

Integrating this prior into 1mproved iterative scaling
requires adding a single term to the derivative of B
(Equation 9):

8—3— 2+Zfzdc
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Again, this new formula is easily solved for a maxi-
mum with a numeric root-finding procedure, like New-
ton’s method. Chen and Rosenfeld [1999] have shown
that introducing a Gaussian prior on each \; improves



performance for language modeling tasks when sparse
data causes overfitting. This paper also derives the up-
date rule given by Equation 11.

3 Maximum Entropy for Text
Classification

In order to apply maximum entropy to a domain, we
need to select a set of features to use for setting the con-
straints. For text classification with maximum entropy,
we use word counts as our features. More specifically, in
this paper for each word-class combination we instanti-
ate a feature as:

0 ifc£d
fw,er(d,c) = { N(d,w)

N(d)

(12)

Otherwise,

where N (d,w) is the number of times word w occurs in
document d, and N(d) is the number of words in d.

With this representation, if a word occurs often in one
class, we would expect the weight for that word-class
pair to be higher than for the word paired with other
classes. In most natural language tasks using maximum
entropy the features are naturally binary features. In
text classification, we expect that features accounting for
the number of times a word occurs should improve clas-
sification. For example, naive Bayes implementations
that use counts outperform implementations that do not
[McCallum and Nigam, 1998]. Note that we use scaled
counts as features instead of simple counts. We initially
choose this representation for computational efficiency,
as it lets us perform each IIS iteration in closed form.
Some implications of this choice are discussed in Sec-
tion 6.

One especially pleasing aspect of maximum entropy is
that it does not suffer from any independence assump-
tions. For example, consider the phrase “Buenos Aires,”
where the two words almost always co-occur, and only
rarely occur by themselves. Naive Bayes will double-
count the evidence of this phrase. Maximum entropy,
on the other hand, will discount the \; for each of these
features such that their weight towards classification is
appropriately reduced by half. This is because the con-
straints work over expectations of the counts. One im-
plication of this freedom from independence assumptions
is that bigrams and phrases can be easily added as fea-
tures by maximum entropy, without worry that the fea-
tures are overlapping. Experiments with such expanded
features is a promising area of future work.

4 Related Work

Two other studies have been performed using maximum
entropy for text classification. The first, a study by Rat-
naparkhi [1998], is a very preliminary experiment. In
a comparison between maximum entropy and decision
trees, maximum entropy performs better at classifying
the acq class in the Reuters-21578 data set. Here, bi-
nary features are used instead of counts. We generally

expect that representing counts instead of binary fea-
tures should enhance performance.

A recent study on feature selection and model build-
ing for maximum entropy [Mikheev, 1999] examined text
classification performance on the RAPRA corpus of tech-
nical abstracts. Here, maximum entropy compares fa-
vorably to a smoothed logistic term-weighting model.
Again, features are only binary valued. Interestingly,
the use of pairs of words and word phrases as features
improved performance.

5 Results

This section provides some preliminary empirical evi-
dence that maximum entropy is a competitive text clas-
sification algorithm. The results are based on three dif-
ferent data sets.!

5.1 Data Sets and Protocol

The WebKB data set [Craven et al., 1998] contains web
pages gathered from university computer science depart-
ments. The pages are divided into seven categories:
student, faculty, staff, course, project, department and
other. In this paper, we use the four most populous
entity-representing categories: student, faculty, course
and project, all together containing 4199 pages. We did
not use stemming or a stoplist. The resulting vocabulary
has 23830 words.

The Industry Sector hierarchy, made available by Mar-
ket Guide Inc. (www.marketguide.com) consists of com-
pany web pages classified in a hierarchy of industry sec-
tors [McCallum et al., 1998]. There are 6440 web pages
partitioned into the 71 classes that are two levels deep
in the hierarchy. In tokenizing the data we do not stem.
After removing tokens that occur only once or are on a
stoplist, the corpus has a vocabulary of size 29964.

The Newsgroups data set contains about 20,000 arti-
cles evenly divided among 20 UseNet discussion groups
[Joachims, 1997]. Many of the categories fall into con-
fusable clusters; for example, five of them are comp.*
discussion groups, and three of them discuss religion.
When tokenizing this data, we skip the UseNet head-
ers (thereby discarding the subject line); tokens are
formed from contiguous alphabetic characters with no
stemming. Documents containing UU-encoded segments
were discarded. The resulting vocabulary, after remov-
ing words that occur only once or on a stoplist, has 57040
words.

Empirical results with maximum entropy are com-
pared to naive Bayes [Lewis, 1998; Mitchell, 1997], a pop-
ular baseline for text classification. We use the multino-
mial instantiation of naive Bayes [McCallum and Nigam,
1998], which accounts for the number of times each word
occurs. Two variants of multinomial naive Bayes are
tested. In scaled naive Bayes, each word count in a doc-
ument is scaled such that each document has a constant
number of word occurrences. In regular naive Bayes,

These data sets are all available on the Internet. See
http://www.cs.cmu.edu/~TextLearning.



Data Set Regular naive Bayes | Scaled naive Bayes | Basic Maximum Entropy | Maximum Entropy w/ Prior
WebKB 13.69 (2000) 13.10 (5000) 7.92 (2000) 8.08 (2000)
Industry Sector 28.97 (20000) 20.21 (29964) 21.14 (29964) 18.90 (29964)
Newsgroups 16.15 (57040) 14.43 (57040 15.77 (57040) 15.14 (57040)

Table 2: Classification error (%) of maximum entropy text classification on three data sets, compared to regular and
scaled naive Bayes. Each is shown at their optimal vocabulary size, indicated in parentheses. Note that maximum
entropy always outperforms regular naive Bayes, but the comparison is mixed with scaled naive Bayes.
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Figure 1: Accuracy over iterations of improved itera-
tive scaling on the Industry Sector dataset with the full
vocabulary, where it does best on this dataset. For ba-
sic maximum entropy, initially, accuracy is very good,
and then degrades slowly, indicating the possibility of
overfitting. Problems with overfitting are reduced with
a Gaussian prior, and performance improves. Note the
scaled vertical axis.

word counts are left unscaled. Previous work [Nigam
et al., 1999] has observed that on some datasets, scaled
naive Bayes outperforms regular naive Bayes.

Vocabulary selection for naive Bayes and maximum
entropy is performed by taking the top words by mutual
information with the class variable. This is a commonly-
used technique for vocabulary selection in naive Bayes
text classification [Yang and Pederson, 1997). With max-
imum entropy, each feature is the normalized count of
the number of times a word occurs given that the doc-
ument belongs to a specific class (Equation 12). Con-
straints are created for all word-class pairs for which
there is at least some training data. Thus, we do not
constrain the expected value of a feature to be zero.

In experiments with a Gaussian prior, a single vari-
ance is chosen for all features. Choosing this variance,
as well as the vocabulary size, is done by optimizing per-
formance on the test set. In practice, these parameters
can be set by cross-validation.

Maximum entropy and naive Bayes experiments are
performed with ten trials of randomly selected train-test
splits. For the WebKB data set, 30% of the documents
are held-out for testing. For Industry Sector and News-
groups, 35% of the documents are held-out. For News-
groups and Industry Sector, basic maximum entropy suf-
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Figure 2: Accuracy over iterations of improved iterative
scaling on the WebKB dataset with a 2000 word vocabu-
lary, where it does best on this dataset. The trend here is
very different than in the Industry Sector dataset. Here,
accuracy continues to improve gradually over many iter-
ations of IIS. Performance is essentially unchanged with
a Gaussian prior. Note the scaled vertical axis.

fers from overfitting (see results and discussion below).
For this reason, 5% of the documents are used in these
cases as a validation set for early stopping of IIS iter-
ations. Other maximum entropy experiments run for a
fixed number of iterations.

5.2 Experiments

Table 2 shows classification error results for each of the
three algorithms on each dataset. The first two columns
show performance with the two variations of naive Bayes.
As an interesting aside, not that scaled naive Bayes is
more accurate than regular naive Bayes on these data
sets. The third column shows the performance of ba-
sic maximum entropy, without a prior. Note that in all
cases, maximum entropy performs better than regular
naive Bayes. In some cases, the difference is dramatic;
for example on the WebKB dataset, maximum entropy
provides a 40% reduction in error over naive Bayes. How-
ever, in comparison to scaled naive Bayes, the results are
mixed. On WebKB, maximum entropy gives lower error,
but for Industry Sector and Newsgroups, it does slightly
worse.

On the two datasets where maximum entropy per-
forms worse than scaled naive Bayes, a closer analysis
of basic maximum entropy indicates that it is overfitting
the training data. The bottom line in Figure 1 shows
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Figure 3: Classification error on the WebKB data set
with different vocabulary sizes. Note the increase in er-
ror at large vocab sizes for maximum entropy, indicating
the importance of feature selection.

how the accuracy of the maximum entropy classifier pro-
gresses on the Industry Sector data through the rounds
of improved iterative scaling when a validation set is not
used for halting. Note that best performance, 78.8%, is
achieved at only the second iteration of IIS. However, by
the 20th iteration of IIS, accuracy has declined to 75.8%.
Similar trends appear in the 20 Newsgroups data, but not
in the WebKB data (Figure 2), where maximum entropy
performs better than both naive Bayes variations. These
results show that basic maximum entropy is overfitting
the data in cases where it is not performing well.

When maximum entropy is used with a Gaussian
prior, overfitting is reduced, and performance improves.
The top line in Figure 1 shows classification accuracy
of maximum entropy when a prior is used. Here, per-
formance does not degrade, and classification error is
better. The fourth column of Table 2 shows classifica-
tion error for these cases. In cases where overfitting was
evident, error is decreased. Now, performance on the In-
dustry Sector data set is better than scaled naive Bayes.
Performance on the WebKB data set, which had no over-
fitting problems, is essentially unchanged.

Further analysis indicates some areas for future work.
Figure 3 shows error of the classifiers across different
vocabulary sizes for WebKB. Here, the error of the max-
imum entropy classifier increases rather suddenly after
several thousand words. This shows that feature selec-
tion is an important factor for maximum entropy. In
these experiments, feature selection was performed with
a method that is natural for naive Bayes. In the next sec-
tion, we discuss some feature selection techniques that
would be more appropriate for maximum entropy.

6 Future Work

Many areas of future work remain. The results indicate
that maximum entropy may be sensitive to poor fea-
ture selection. Since a feature for maximum entropy is
a combination of a class and a word, there is no need to

have features for all classes for a vocabulary word. For
example, “professor” could be a feature for the faculty
and course classes, but nor for the student class. An it-
erative greedy feature selection technique for maximum
entropy [Della Pietra et al., 1997] has been shown to
create compact representations that result in good max-
imum entropy performance. We intend to test such an
approach for text classification.

In the experiments presented here, the same Gaussian
prior variance was used for all feature values. This need
not be the case. For features with a large amount of
training data, overfitting should not be a problem, and
a large variance can be used for the prior. For features
with only sparse training data, a strong prior (smaller
variance) should be used. Future experiments that ad-
just the prior based on the amount of training data may
improve our results further.

Another area of our ongoing work lies in the repre-
sentation of features and constraints. In the results pre-
sented here, we use scaled counts as features. Prelimi-
nary results using unscaled counts indicate that accuracy
decreases. We hypothesize that using unscaled counts
hurts for long documents where repeated words are given
too strong a weight. This suggests using feature func-
tions of the form log(count) or some other sub-linear
representation instead of the counts themselves.

One promising aspect of maximum entropy is that it
naturally handles overlapping features. For example, we
could supplement our word features with bigram, phrase,
and even non-text features. Maximum entropy will not
be hurt by strong independence assumptions, as would
naive Bayes with these features. In future work, we will
try to augment maximum entropy with expanded feature
classes.

One last area of future work is a more thorough com-
parison of maximum entropy to other state-of-the-art
text classification algorithms on several domains. On-
going work includes direct comparisons of maximum en-
tropy to support vector machines [Joachims, 1998], k-
nearest neighbor [Yang, 1999], and RIPPER [Cohen and
Singer, 1996].

In summary, maximum entropy is a technique that is
popular for many other natural language tasks. Its over-
riding principle is one of minimal assumption (maximal
entropy) that matches an intuition of how probability
distributions should be estimated from data. Empiri-
cal analysis shows that maximum entropy is competitive
with, and sometimes better than, naive Bayes text clas-
sification.
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