
Text Classification by Bootstrapping with
Keywords, EM and Shrinkage

Andrew McCallum‡†

mccallum@justresearch.com
Kamal Nigam†

knigam@cs.cmu.edu
‡Just Research

4616 Henry Street
Pittsburgh, PA 15213

†School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

When applying text classification to com-
plex tasks, it is tedious and expensive
to hand-label the large amounts of train-
ing data necessary for good performance.
This paper presents an alternative ap-
proach to text classification that requires
no labeled documents; instead, it uses a
small set of keywords per class, a class
hierarchy and a large quantity of easily-
obtained unlabeled documents. The key-
words are used to assign approximate la-
bels to the unlabeled documents by term-
matching. These preliminary labels be-
come the starting point for a bootstrap-
ping process that learns a naive Bayes clas-
sifier using Expectation-Maximization and
hierarchical shrinkage. When classifying a
complex data set of computer science re-
search papers into a 70-leaf topic hierar-
chy, the keywords alone provide 45% accu-
racy. The classifier learned by bootstrap-
ping reaches 66% accuracy, a level close to
human agreement.

1 Introduction

When provided with enough labeled training exam-
ples, a variety of text classification algorithms can
learn reasonably accurate classifiers (Lewis, 1998;
Joachims, 1998; Yang, 1999; Cohen and Singer,
1996). However, when applied to complex domains
with many classes, these algorithms often require ex-
tremely large training sets to provide useful classifi-
cation accuracy. Creating these sets of labeled data
is tedious and expensive, since typically they must
be labeled by a person. This leads us to consider
learning algorithms that do not require such large
amounts of labeled data.

While labeled data is difficult to obtain, un-
labeled data is readily available and plentiful.
Castelli and Cover (1996) show in a theoretical
framework that unlabeled data can indeed be used
to improve classification, although it is exponentially
less valuable than labeled data. Fortunately, unla-
beled data can often be obtained by completely auto-
mated methods. Consider the problem of classifying
news articles: a short Perl script and a night of au-
tomated Internet downloads can fill a hard disk with
unlabeled examples of news articles. In contrast, it
might take several days of human effort and tedium
to label even one thousand of these.

In previous work (Nigam et al., 1999) it has been
shown that with just a small number of labeled docu-
ments, text classification error can be reduced by up
to 30% when the labeled documents are augmented
with a large collection of unlabeled documents.

This paper considers the task of learning text clas-
sifiers with no labeled documents at all. Knowledge
about the classes of interest is provided in the form
of a few keywords per class and a class hierarchy.
Keywords are typically generated more quickly and
easily than even a small number of labeled docu-
ments. Many classification problems naturally come
with hierarchically-organized classes. Our algorithm
proceeds by using the keywords to generate prelim-
inary labels for some documents by term-matching.
Then these labels, the hierarchy, and all the unla-
beled documents become the input to a bootstrap-
ping algorithm that produces a naive Bayes classi-
fier.

The bootstrapping algorithm used in this paper
combines hierarchical shrinkage and Expectation-
Maximization (EM) with unlabeled data. EM is an
iterative algorithm for maximum likelihood estima-
tion in parametric estimation problems with missing
data. In our scenario, the class labels of the docu-
ments are treated as missing data. Here, EM works
by first training a classifier with only the documents

...

...

... ...

...
...

computer, university, science, system, paper

...

language
NLP

processing

Compiler
 Design
compiler

Garbage

garbage
collection

 Collection
Semantics
semantics
denotational

software
design
engineering

Software
 Engineering programming

Programming

language
logic

programs

OS
distributed
system
systems
network
time

learning

Artificial
 Intelligence

intelligence

Hardware &
 Architecture
circuits
design

HCI

multimedia

information
text

retrieval

Information
 Retrieval

classification

Cooperative

cscw
multimedia
Multimedia

interface

Interface
 Design

design

Planning

knowledge
representation

Knowledge
 Representation

tools
environments

construction
types optimization

memory

region

parallel
data
language

text
information

learning
 Learning
Machine

algorithms

networks

algorithm

university problems
plan
reasoning
temporal

language

natural
system

interfaces
sketch
user

group
provide
work

collaborative
real
time
data
media

computer
system

university
paper

performance
university
computer

based
computer
university

university

codelanguage
natural

planning

documents

Computer Science

Figure 1: A subset of Cora’s topic hierarchy. Each node contains its title, and the five most probable words, as
calculated by naive Bayes and shrinkage with vertical word redistribution (Hofmann and Puzicha, 1998). Words
among the initial keywords for that class are indicated in plain font; others are in italics.

preliminarily-labeled by the keywords, and then uses
the classifier to re-assign probabilistically-weighted
class labels to all the documents by calculating the
expectation of the missing class labels. It then trains
a new classifier using all the documents and iterates.

We further improve classification by incorporating
shrinkage, a statistical technique for improving pa-
rameter estimation in the face of sparse data. When
classes are provided in a hierarchical relationship,
shrinkage is used to estimate new parameters by us-
ing a weighted average of the specific (but unreli-
able) local class estimates and the more general (but
also more reliable) ancestors of the class in the hier-
archy. The optimal weights in the average are cal-
culated by an EM process that runs simultaneously
with the EM that is re-estimating the class labels.

Experimental evaluation of this bootstrapping ap-
proach is performed on a data set of thirty-thousand
computer science research papers. A 70-leaf hier-
archy of computer science and a few keywords for
each class are provided as input. Keyword matching
alone provides 45% accuracy. Our bootstrapping al-
gorithm uses this as input and outputs a naive Bayes
text classifier that achieves 66% accuracy. Inter-
estingly, this accuracy approaches estimated human
agreement levels of 72%.

The experimental domain in this paper originates
as part of the Ra research project, an effort to build
domain-specific search engines on the Web with ma-
chine learning techniques. Our demonstration sys-
tem, Cora, is a search engine over computer science
research papers (McCallum et al., 1999). The boot-
strapping classification algorithm described in this
paper is used in Cora to place research papers into

a Yahoo-like hierarchy specific to computer science.
The search engine, including this hierarchy, is pub-
licly available at www.cora.justresearch.com.

2 Generating Preliminary Labels
with Keywords

The first step in the bootstrapping process is to use
the keywords to generate preliminary labels for as
many of the unlabeled documents as possible. Each
class is given just a few keywords. Figure 1 shows
examples of the number and type of keywords given
in our experimental domain—the human-provided
keywords are shown in the nodes in non-italic font.

In this paper, we generate preliminary labels from
the keywords by term-matching in a rule-list fashion:
for each document, we step through the keywords
and place the document in the category of the first
keyword that matches. Finding enough keywords to
obtain broad coverage while simultaneously finding
sufficiently specific keywords to obtain high accuracy
is very difficult; it requires intimate knowledge of the
data and a lot of trial and error.

As a result, classification by keyword matching is
both an inaccurate and incomplete. Keywords tend
to provide high-precision and low-recall; this brittle-
ness will leave many documents unlabeled. Some
documents will match keywords from the wrong
class. In general we expect the low recall of the key-
words to be the dominating factor in overall error.
In our experimental domain, for example, 59% of the
unlabeled documents do not contain any keywords.

Another method of priming bootstrapping with
keywords would be to take each set of keywords as a

labeled mini-document containing just a few words.
This could then be used as input to any standard
learning algorithm. Testing this, and other keyword
labeling approaches, is an area of ongoing work.

3 The Bootstrapping Algorithm

The goal of the bootstrapping step is to generate
a naive Bayes classifier from the inputs: the (inac-
curate and incomplete) preliminary labels, the un-
labeled data and the class hierarchy. One straight-
forward method would be to simply take the unla-
beled documents with preliminary labels, and treat
this as labeled data in a standard supervised set-
ting. This approach provides only minimal benefit
for three reasons: (1) the labels are rather noisy,
(2) the sample of preliminarily-labeled documents
is skewed from the regular document distribution
(i.e. it includes only documents containing key-
words), and (3) data are sparse in comparison to
the size of the feature space. Adding the remain-
ing unlabeled data and running EM helps counter
the first and second of these reasons. Adding hier-
archical shrinkage to naive Bayes helps counter the
first and third of these reasons. We begin a detailed
description of our bootstrapping algorithm with a
short overview of standard naive Bayes text classi-
fication, then proceed by adding EM to incorporate
the unlabeled data, and conclude by explaining hi-
erarchical shrinkage. An outline of the entire algo-
rithm is presented in Table 1.

3.1 The naive Bayes framework

We build on the framework of multinomial naive
Bayes text classification (Lewis, 1998; McCallum
and Nigam, 1998). It is useful to think of naive
Bayes as estimating the parameters of a probabilis-
tic generative model for text documents. In this
model, first the class of the document is selected.
The words of the document are then generated based
on the parameters for the class-specific multinomial
(i.e. unigram model). Thus, the classifier parame-
ters consist of the class prior probabilities and the
class-conditioned word probabilities. For formally,
each class, cj, has a document frequency relative to
all other classes, written P(cj). For every word
wt in the vocabulary V , P(wt|cj) indicates the fre-
quency that the classifier expects word wt to occur
in documents in class cj.

In the standard supervised setting, learning of the
parameters is accomplished using a set of labeled
training documents, D. To estimate the word prob-
ability parameters, P(wt|cj), we count the frequency
with which word wt occurs among all word occur-
rences for documents in class cj. We supplement

• Inputs: A collection D of unlabeled documents, a
class hierarchy, and a few keywords for each class.

• Generate preliminary labels for as many of the unla-
beled documents as possible by term-matching with
the keywords in a rule-list fashion.

• Initialize all the λj’s to be uniform along each path
from a leaf class to the root of the class hierarchy.

• Iterate the EM algorithm:

• (M-step) Build the maximum likelihood
multinomial at each node in the hierarchy
given the class probability estimates for each
document (Equations 1 and 2). Normalize all
the λj ’s along each path from a leaf class to the
root of the class hierarchy so that they sum to
1.

• (E-step) Calculate the expectation of the
class labels of each document using the clas-
sifier created in the M-step (Equation 3). In-
crement the new λj ’s by attributing each word
of held-out data probabilistically to the ances-
tors of each class.

• Output: A naive Bayes classifier that takes an un-
labeled document and predicts a class label.

Table 1: An outline of the bootstrapping algorithm de-
scribed in Sections 2 and 3.

this with Laplace smoothing that primes each esti-
mate with a count of one to avoid probabilities of
zero. Let N(wt, di) be the count of the number of
times word wt occurs in document di, and define
P(cj|di) ∈ {0, 1}, as given by the document’s class
label. Then, the estimate of the probability of word
wt in class cj is:

P(wt|cj)=
1 +

∑
di∈D N(wt, di)P(cj |di)

|V |+
∑|V |
s=1

∑
di∈D N(ws, di)P(cj |di)

.

(1)
The class prior probability parameters are set in the
same way, where |C| indicates the number of classes:

P(cj) =
1 +

∑
di∈D P(cj|di)
|C|+ |D| . (2)

Given an unlabeled document and a classifier, we
determine the probability that the document be-
longs in class cj using Bayes’ rule and the naive
Bayes assumption—that the words in a document
occur independently of each other given the class. If
we denote wdi,k to be the kth word in document di,
then classification becomes:

P(cj |di) ∝ P(cj)P(di|cj)

∝ P(cj)
|di|∏
k=1

P(wdi,k |cj). (3)

Empirically, when given a large number of train-
ing documents, naive Bayes does a good job of
classifying text documents (Lewis, 1998). More
complete presentations of naive Bayes for text
classification are provided by Mitchell (1997) and
McCallum and Nigam (1998).

3.2 Adding unlabeled data with EM

In the standard supervised setting, each document
comes with a label. In our bootstrapping sce-
nario, the preliminary keyword labels are both in-
complete and inaccurate—the keyword matching
leaves many many documents unlabeled, and la-
bels some incorrectly. In order to use the entire
data set in a naive Bayes classifier, we use the
Expectation-Maximization (EM) algorithm to gen-
erate probabilistically-weighted class labels for all
the documents. This results in classifier parameters
that are more likely given all the data.

EM is a class of iterative algorithms for maximum
likelihood or maximum a posteriori parameter esti-
mation in problems with incomplete data (Dempster
et al., 1977). Given a model of data generation, and
data with some missing values, EM iteratively uses
the current model to estimate the missing values,
and then uses the missing value estimates to im-
prove the model. Using all the available data, EM
will locally maximize the likelihood of the parame-
ters and give estimates for the missing values. In
our scenario, the class labels of the unlabeled data
are the missing values.

In implementation, EM is an iterative two-step
process. Initially, the parameter estimates are set
in the standard naive Bayes way from just the
preliminarily labeled documents. Then we iter-
ate the E- and M-steps. The E-step calculates
probabilistically-weighted class labels, P(cj |di), for
every document using the classifier and Equation 3.
The M-step estimates new classifier parameters us-
ing all the documents, by Equations 1 and 2, where
P(cj |di) is now continuous, as given by the E-step.
We iterate the E- and M-steps until the classifier
converges. The initialization step from the prelimi-
nary labels identifies each mixture component with
a class and seeds EM so that the local maxima that
it finds correspond well to class definitions.

In previous work (Nigam et al., 1999), we have
shown this technique significantly increases text

classification accuracy when given limited amounts
of labeled data and large amounts of unlabeled data.
The expectation here is that EM will both correct
and complete the labels for the entire data set.

3.3 Improving sparse data estimates with
shrinkage

Even when provided with a large pool of documents,
naive Bayes parameter estimation during bootstrap-
ping will suffer from sparse data because naive Bayes
has so many parameters to estimate (|V ||C|+ |C|).
Using the provided class hierarchy, we can integrate
the statistical technique shrinkage into the boot-
strapping algorithm to help alleviate the sparse data
problem.

Consider trying to estimate the probability of the
word “intelligence” in the class NLP. This word
should clearly have non-negligible probability there;
however, with limited training data we may be un-
lucky, and the observed frequency of “intelligence”
in NLP may be very far from its true expected value.
One level up the hierarchy, however, the Artificial In-
telligence class contains many more documents (the
union of all the children). There, the probability
of the word “intelligence” can be more reliably esti-
mated.

Shrinkage calculates new word probability esti-
mates for each leaf class by a weighted average of
the estimates on the path from the leaf to the root.
The technique balances a trade-off between speci-
ficity and reliability. Estimates in the leaf are most
specific but unreliable; further up the hierarchy es-
timates are more reliable but unspecific. We can
calculate mixture weights for the averaging that are
guaranteed to maximize the likelihood of held-out
data with the EM algorithm.

One can think of hierarchical shrinkage as a gener-
ative model that is slightly augmented from the one
described in Section 3.1. As before, a class (leaf) is
selected first. Then, for each word position in the
document, an ancestor of the class (including itself)
is selected according to the shrinkage weights. Then,
the word itself is chosen based on the multinomial
word distribution of that ancestor. If each word in
the training data were labeled with which ancestor
was responsible for generating it, then estimating
the mixture weights would be a simple matter of
maximum likelihood estimation from the ancestor
emission counts. But these ancestor labels are not
provided in the training data, and hence we use EM
to fill in these missing values. We use the term ver-
tical EM to refer to this process that calculates an-
cestor mixture weights; we use the term horizontal
EM to refer to the process of filling in the missing

class (leaf) labels on the unlabeled documents. Both
vertical and horizontal EM run concurrently, with
interleaved E- and M-steps.

More formally, let {P1(wt|cj), . . . ,Pk(wt|cj)} be
word probability estimates, where P1(wt|cj) is the
maximum likelihood estimate using training data
just in the leaf, P2(wt|cj) is the maximum likeli-
hood estimate in the parent using the training data
from the union of the parent’s children, Pk−1(wt|cj)
is the estimate at the root using all the training data,
and Pk(wt|cj) is the uniform estimate (Pk(wt|cj) =
1/|V |). The interpolation weights among cj’s “an-
cestors” (which we define to include cj itself) are
written {λ1

j , λ
2
j , . . . , λ

k
j}, where

∑k
a=1 λ

a
j = 1. The

new word probability estimate based on shrinkage,
denoted P̌(wt|cj), is then

P̌(wt|cj) = λ1
jP

1(wt|cj) + . . .+ λkjPk(wt|cj). (4)

The λj vectors are calculated by the iterations of
EM. In the E-step we calculate for each class cj
and each word of unlabeled held out data, H, the
probability that the word was generated by the ith
ancestor. In the M-step, we normalize the sum of
these expectations to obtain new mixture weights
λj . Without the use of held out data, all the mix-
ture weight would concentrate in the leaves.

Specifically, we begin by initializing the λ mixture
weights for each leaf to a uniform distribution. Let
βaj (di,k) denote the probability that the ath ancestor
of cj was used to generate word occurrence di,k. The
E-step consists of estimating the β’s:

βaj (di,k) =
λajPa(wdi,k |cj)∑
m λ

m
j Pm(wdi,k |cj)

. (5)

In the M-step, we derive new and guaranteed im-
proved weights, λ, by summing and normalizing the
β’s:

λaj =

∑
di,k∈H β

a
j (di,k)P(cj |di)∑

di,k∈H P(cj |di)
. (6)

The E- and M-steps iterate until the λ’s con-
verge. These weights are then used to calculate
new shrinkage-based word probability estimates, as
in Equation 4. Classification of new test documents
is performed just as before (Equation 3), where the
Laplace estimates of the word probability estimates
are replaced by shrinkage-based estimates.

A more complete description of hierarchical
shrinkage for text classification is presented by
McCallum et al. (1998).

4 Related Work

Other research efforts in text learning have also used
bootstrapping approaches. The co-training algo-
rithm (Blum and Mitchell, 1998) for classification
works in cases where the feature space is separable
into naturally redundant and independent parts. For
example, web pages can be thought of as the text on
the web page, and the collection of text in hyperlink
anchors to that page.

A recent paper by Riloff and Jones (1999) boot-
straps a dictionary of locations from just a small set
of known locations. Here, their mutual bootstrap
algorithm works by iteratively identifying syntactic
constructs indicative of known locations, and identi-
fying new locations using these indicative constructs.

The preliminary labeling by keyword matching
used in this paper is similar to the seed collocations
used by Yarowsky (1995). There, in a word sense
disambiguation task, a bootstrapping algorithm is
seeded with some examples of common collocations
with the particular sense of some word (e.g. the seed
“life” for the biological sense of “plant”).

5 Experimental Results

In this section, we provide empirical evidence that
bootstrapping a text classifier from unlabeled data
can produce a high-accuracy text classifier. As a test
domain, we use computer science research papers.
We have created a 70-leaf hierarchy of computer sci-
ence topics, part of which is shown in Figure 1. Cre-
ating the hierarchy took about 60 minutes, during
which we examined conference proceedings, and ex-
plored computer science sites on the Web. Select-
ing a few keywords associated with each node took
about 90 minutes. A test set was created by expert
hand-labeling of a random sample of 625 research
papers from the 30,682 papers in the Cora archive at
the time we began these experiments. Of these, 225
(about one-third) did not fit into any category, and
were discarded—resulting in a 400 document test
set. Labeling these 400 documents took about six
hours. Some of these papers were outside the area
of computer science (e.g. astrophysics papers), but
most of these were papers that with a more complete
hierarchy would be considered computer science pa-
pers. The class frequencies of the data are not too
skewed; on the test set, the most populous class ac-
counted for only 7% of the documents.

Each research paper is represented as the words
of the title, author, institution, references, and ab-
stract. A detailed description of how these seg-
ments are automatically extracted is provided else-
where (McCallum et al., 1999; Seymore et al., 1999).

Method # Lab # P-Lab # Unlab Acc
Keyword — — — 45%
NB 100 — — 30%
NB 399 — — 47%
NB+EM+S — 12,657 18,025 66%
NB — 12,657 — 47%
NB+S — 12,657 — 63%
Human — — — 72%

Table 2: Classification results with different techniques:
keyword matching, human agreement, naive Bayes (NB),
and naive Bayes combined with hierarchical shrink-
age (S), and EM. The classification accuracy (Acc),
and the number of labeled (Lab), keyword-matched
preliminarily-labeled (P-Lab), and unlabeled (Unlab)
documents used by each method are shown.

Words occurring in fewer than five documents and
words on a standard stoplist were discarded. No
stemming was used. Bootstrapping was performed
using the algorithm outlined in Table 1.

Table 2 shows classification results with different
classification techniques used. The rule-list classifier
based on the keywords alone provides 45%. (The
43% of documents in the test set containing no key-
words cannot be assigned a class by the rule-list clas-
sifier, and are counted as incorrect.) As an inter-
esting time comparison, about 100 documents could
have been labeled in the time it took to generate
the keyword lists. Naive Bayes accuracy with 100
labeled documents is only 30%. With 399 labeled
documents (using our test set in a leave-one-out-
fashion), naive Bayes reaches 47%. When running
the bootstrapping algorithm, 12,657 documents are
given preliminary labels by keyword matching. EM
and shrinkage incorporate the remaining 18,025 doc-
uments, “fix” the preliminary labels and leverage the
hierarchy; the resulting accuracy is 66%. As an in-
teresting comparison, agreement on the test set be-
tween two human experts was 72%.

A few further experiments reveal some of the
inner-workings of bootstrapping. If we build a naive
Bayes classifier in the standard supervised way from
the 12,657 preliminarily labeled documents the clas-
sifier gets 47% accuracy. This corresponds to the
performance for the first iteration of bootstrapping.
Note that this matches the accuracy of traditional
naive Bayes with 399 labeled training documents,
but that it requires less than a quarter the hu-
man labeling effort. If we run bootstrapping with-
out the 18,025 documents left unlabeled by keyword
matching, accuracy reaches 63%. This indicates that
shrinkage and EM on the preliminarily labeled doc-
uments is providing substantially more benefit than
the remaining unlabeled documents.

One explanation for the small impact of the 18,025
documents left unlabeled by keyword matching is
that many of these do not fall naturally into the
hierarchy. Remember that about one-third of the
30,000 documents fall outside the hierarchy. Most
of these will not be given preliminary labels by key-
word matching. The presence of these outlier docu-
ments skews EM parameter estimation. A more in-
clusive computer science hierarchy would allow the
unlabeled documents to benefit classification more.

However, even without a complete hierarchy, we
could use these documents if we could identify these
outliers. Some techniques for robust estimation with
EM are discussed by McLachlan and Basford (1988).
One specific technique for these text hierarchies is to
add extra leaf nodes containing uniform word dis-
tributions to each interior node of the hierarchy in
order to capture documents not belonging in any of
the predefined topic leaves. This should allow EM
to perform well even when a large percentage of the
documents do not fall into the given classification
hierarchy. A similar approach is also planned for re-
search in topic detection and tracking (TDT) (Baker
et al., 1999). Experimentation with these techniques
is an area of ongoing research.

6 Conclusions and Future Work

This paper has considered building a text classifier
without labeled training documents. In its place,
our bootstrapping algorithm uses a large pool of un-
labeled documents and class-specific knowledge in
the form of a few keywords per class and a class
hierarchy. The bootstrapping algorithm combines
Expectation-Maximization and hierarchical shrink-
age to correct and complete preliminary labeling
provided by keyword matching. Experimental re-
sults show that accuracies close to human agreement
can be obtained by the bootstrapping algorithm.

In future work we plan to refine our probabilis-
tic model to allow for documents to be placed in
interior hierarchy nodes, documents to have mul-
tiple class assignments, and classes to be modeled
with multiple mixture components. We are also in-
vestigating principled methods of re-weighting the
word features for “semi-supervised” clustering that
will provide better discriminative training with un-
labeled data.

Acknowledgements

Kamal Nigam was supported in part by the Darpa
HPKB program under contract F30602-97-1-0215.

References

D. Baker, T. Hofmann, A. McCallum, and Y. Yang.
1999. A hierarchical probabilistic model for nov-
elty detection in text. Technical report, Just Re-
search. http://www.cs.cmu.edu/∼mccallum.

A. Blum and T. Mitchell. 1998. Combining labeled
and unlabeled data with co-training. In COLT
’98.

V. Castelli and T. M. Cover. 1996. The relative
value of labeled and unlabeled samples in pat-
tern recognition with an unknown mixing param-
eter. IEEE Transactions on Information Theory,
42(6):2101–2117.

W. Cohen and Y. Singer. 1996. Context-sensitive
learning methods for text categorization. In SI-
GIR ’96.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38.

T. Hofmann and J. Puzicha. 1998. Statistical mod-
els for co-occurrence data. Technical Report AI
Memo 1625, AI Lab, MIT.

T. Joachims. 1998. Text categorization with Sup-
port Vector Machines: Learning with many rele-
vant features. In ECML-98.

D. D. Lewis. 1998. Naive (Bayes) at forty: The
independence assumption in information retrieval.
In ECML-98.

A. McCallum and K. Nigam. 1998. A comparison
of event models for naive Bayes text classification.
In AAAI-98 Workshop on Learning for Text Cat-
egorization. Tech. rep. WS-98-05, AAAI Press.
http://www.cs.cmu.edu/∼mccallum.

A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng.
1998. Improving text clasification by shrinkage in
a hierarchy of classes. In ICML-98.

Andrew McCallum, Kamal Nigam, Jason Rennie,
and Kristie Seymore. 1999. Using machine learn-
ing techniques to build domain-specific search en-
gines. In IJCAI-99. To appear.

G.J. McLachlan and K.E. Basford. 1988. Mixture
Models. Marcel Dekker, New York.

T. M. Mitchell. 1997. Machine Learning. McGraw-
Hill, New York.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell.
1999. Text classification from labeled and unla-
beled documents using EM. Machine Learning.
To appear.

E. Riloff and R. Jones. 1999. Learning dictionaries
for information extraction using multi-level boot-
strapping. In AAAI-99. To appear.

K. Seymore, A. McCallum, and R. Rosenfeld. 1999.
Learning hidden Markov model structure for in-
formation extraction. In AAAI-99 Workshop on
Machine Learning for Information Extraction. To
appear.

Y. Yang. 1999. An evaluation of statistical ap-
proaches to text categorization. Journal of In-
formation Retrieval. To appear.

D. Yarowsky. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. In ACL-
95.

