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Abstract

In many important text classification problems, acquir-
ing class labels for training documents is costly, while
gathering large quantities of unlabeled data is cheap.
This paper shows that the accuracy of text classifiers
trained with a small number of labeled documents can
be improved by augmenting this small training set with
a large pool of unlabeled documents. We present a
theoretical argument showing that, under common as-
sumptions, unlabeled data contain information about
the target function. We then introduce an algorithm
for learning from labeled and unlabeled text based on
the combination of Expectation-Maximization with a
naive Bayes classifier. The algorithm first trains a clas-
sifier using the available labeled documents, and prob-
abilistically labels the unlabeled documents; it then
trains a new classifier using the labels for all the doc-
uments, and iterates to convergence. Experimental
results, obtained using text from three different real-
world tasks, show that the use of unlabeled data re-
duces classification error by up to 33%.

Introduction
Consider the problem of training a computer to auto-
matically classify text documents. Given the growing
volume of online text available through the World Wide
Web, Internet news feeds, electronic mail, and digital
libraries, this problem is of great practical significance.
There are statistical text learning algorithms that can
be trained to approximately classify documents, given
a sufficient set of labeled training examples. These text
classification algorithms have been used to automati-
cally catalog news articles (Lewis & Ringuette 1994;
Joachims 1998) and web pages (Craven et al. 1998),
automatically learn the reading interests of users (Paz-
zani, Muramatsu, & Billsus 1996; Lang 1995), and auto-
matically sort electronic mail (Lewis & Knowles 1997).

One key difficulty with these current algorithms, and
the issue addressed by this paper, is that they require
a large, often prohibitive, number of labeled training
examples to learn accurately. Take, for example, the
task of learning which newsgroup postings are of inter-
est to a person reading UseNet news, as examined by
Lang (1995). After reading and classifying about 1000
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postings, precision of the learned classifier was about
50% for the top 10% of documents ranked by the clas-
sifier. As a practical user of such a filtering system,
one would obviously prefer learning algorithms that can
provide accurate classifications after hand-labeling only
a dozen postings, rather than a thousand.

In this paper we describe an algorithm that learns
to classify text documents more accurately by using
unlabeled documents to augment the available labeled
training examples. In our example, the labeled doc-
uments might be just 10 postings that have been read
and judged by the user as interesting or not. Our learn-
ing algorithm can make use of the vast multitude of un-
labeled postings available on UseNet to augment these
10 labeled examples. In many text domains, especially
those involving online sources, collecting unlabeled ex-
amples is trivial; it is the labeling that is difficult.

We present experimental results showing that this
unlabeled data can boost learning accuracy in three
text classification domains: newsgroup postings, web
pages, and newswire articles. For example, to identify
the source newsgroup for a UseNet posting with 70%
classification accuracy, our algorithm takes advantage
of 10,000 unlabeled examples and requires only 300 la-
beled examples; on the other hand, a traditional learner
requires 1000 labeled examples to achieve the same ac-
curacy. So, in this case, the technique reduces the need
for labeled training examples by a factor of three.

Why do unlabeled examples boost learning accuracy?
In brief, they provide information about the joint prob-
ability distribution over words within the documents.
Suppose, for example, that using only the labeled data
we determine that documents containing the word “lec-
ture” tend to belong to the class of academic course web
pages. If we use this fact to estimate the classification of
the many unlabeled documents, we might find that the
word “homework” occurs frequently in the unlabeled
examples that are now believed to belong to the course
class. Thus the co-occurrence of the words “lecture”
and “homework” over the large set of unlabeled train-
ing data can provide useful information to construct a
more accurate classifier that considers both “lecture”
and “homework” as indicators of course web pages.

The specific approach we describe here is based
on a combination of two well-known learning algo-
rithms: the naive Bayes classifier (Lewis & Ringuette



1994; McCallum & Nigam 1998) and the Expectation-
Maximization (EM) algorithm (Dempster, Laird, & Ru-
bin 1977). The naive Bayes algorithm is one of a class
of statistical text classifiers that uses word frequencies
as features. Other examples include TFIDF/Rocchio
(Salton 1991), Support Vector Machines (Joachims
1998), k-nearest-neighbor (Yang & Pederson 1997),
exponentiated-gradient and regression models (Lewis et
al. 1996). EM is a class of iterative algorithms for maxi-
mum likelihood estimation in problems with incomplete
data. The result of combining these two is an algorithm
that extends conventional text learning algorithms by
using EM to dynamically derive pseudo-labels for un-
labeled documents during learning, thereby providing
a way to incorporate unlabeled data into supervised
learning. Previous supervised algorithms for learning
to classify from text do not incorporate unlabeled data.

A similar approach was used by Miller and Uyar
(1997) for non-text data sources. We adapt this ap-
proach for the naive Bayes text classifier and conduct
a thorough empirical analysis. Furthermore, we show
theoretically that, under certain conditions, unlabeled
data carry information useful for improving parameter
estimation and classification accuracy. We also intro-
duce a method for balancing the contributions of the
labeled and unlabeled data that avoids degradation in
classification accuracy when these conditions are vio-
lated. A more detailed version of this paper is available
(Nigam et al. 1998).

The Probabilistic Framework

To ground the theoretical aspects of our work, and to
provide a setting for our algorithm, this section presents
a probabilistic framework for characterizing the nature
of documents and classifiers. The framework follows
commonly used assumptions (Lewis & Ringuette 1994;
Domingos & Pazzani 1997) about the data: (1) that
our data is produced by a mixture model, and (2) that
there is a one-to-one correspondence between generative
mixture components and classes.

In this setting, every document di is generated ac-
cording to a probability distribution given by a mix-
ture model, which is parameterized by θ. The mix-
ture model consists of generative components cj ∈ C =
{c1, ..., c|C|}, each component being parameterized by a
disjoint subset of θ. Thus a document is created by (1)
selecting a component according to the prior probabili-
ties, P(cj |θ), then (2) having that component generate
a document according to its own parameters, with dis-
tribution P(di|cj; θ). We can characterize the likelihood
of a document with a sum of total probability over all
generative components:

P(di|θ) =
|C|∑
j=1

P(cj |θ)P(di|cj; θ). (1)

Each document has a class label. We assume that
there is a one-to-one correspondence between classes

and mixture model components, and thus use cj to in-
dicate both the jth mixture component and the jth
class. The class label of document di is written yi, and
if document di was generated by component cj we say
cj = cyi . This class label may or may not be known for
a given document.

Proof of the Value of Unlabeled Data
In this section we show that, given this setting, docu-
ments with unknown class labels are useful for learn-
ing concept classes. ‘Learning concept classes’ in this
setting is equivalent to estimating parameters of an un-
known mixture model that produced the given training
documents. For unlabeled data to carry information
about the parameters θ, it is sufficient that the learning
task is not degenerate, that is,

∃di, cj, θ′, θ′′. P(di|cj; θ′) 6= P(di|cj; θ′′)
∧ P(cj |θ′) 6= P(cj |θ′′). (2)

This assumption excludes tasks where learning is im-
possible, for the reason that all parameterizations θ′

yield equivalent results. High-dimensional mixture
models meet this condition.

To show that knowledge about unlabeled documents
carries information about the parameters θ, we need
to demonstrate the conditional dependence of θ on D,
a random variable over the unlabeled document distri-
bution. That is, show P(θ|D) 6= P(θ). If this conjec-
ture holds, a direct implication is that unlabeled data
contain information about the parameters of θ. We
provide a proof by contradiction. For this, we tem-
porarily assume that θ and D are independent, that
is, ∀θ′. P(θ′|D) = P(θ′). One direct conclusion of this
assumption is that any two parameterizations, θ′ and
θ′′, provide the same class probabilities for any sam-
ple. By applying Bayes’ rule to our assumption, and
substituting using Equation 1 this gives:

|C|∑
j=1

P(di|cj; θ′)P(cj |θ′) =
|C|∑
j=1

P(di|cj; θ′′)P(cj |θ′′). (3)

From here, it is a straightforward exercise to con-
struct a document di and two parameterizations to gen-
erate a contradiction, making use of the non-degeneracy
assumption above. Our assumption of non-degeneracy
requires that for some document the individual terms
in Equation 3 must differ for some θ′ and θ′′; we can
construct one for which the total probability of the doc-
ument also differs for θ′ and θ′′. Thus, our assump-
tion of conditional independence is contradicted, and
parameterizations must be conditionally dependent on
the documents. This signifies that unlabeled data in-
deed contain information about parameters of the gen-
erative model.

However, this does not show that unlabeled data aids
the reduction of classification error. For example, unla-
beled data does not help if there is already an infinite



amount of labeled data; all parameters can be recovered
from just the labeled data and the resulting classifier is
Bayes-optimal (McLachlan & Basford 1988). With an
infinite amount of unlabeled data and no labeled data,
the parameters can be estimated except classes cannot
be matched with components, so classification error re-
mains unimproved. But, with infinite unlabeled data
and finite labeled data, there is classification improve-
ment. With infinite unlabeled data, the classification
error approaches the Bayes optimal solution at an ex-
ponential rate in the number of labeled examples given
(Castelli & Cover 1995). Thus, infinite amounts of un-
labeled data are shown to help classification when there
is some, but not infinite, amounts of labeled data. Un-
fortunately, little is known for the case in which there
are finite amounts of each.

Naive Bayes for Text Classification
In this section, we present the naive Bayes classifier—a
well-known, probabilistic algorithm for classifying text
that is one instantiation of a mixture model. This al-
gorithm forms the foundation upon which we will later
incorporate unlabeled data. The learning task for the
naive Bayes classifier is to use a set of training docu-
ments to estimate the mixture model parameters, then
use the estimated model to classify new documents.

Document di is considered to be an ordered list of
word events. We write wdik for the word in position
k of document di, where the subscript of w indicates
an index into the vocabulary V = 〈w1, w2, . . . , w|V |〉.
In order to generate a document, after a mixture com-
ponent is selected, a document length is chosen inde-
pendently of the component and the words in the doc-
ument. Then, the selected mixture component gen-
erates a sequence words of the specified length. Thus,
we can expand the second term from Equation 1, and
correctly express the probability of a document given
its class using the general multiplication rule over the
sequence of individual word events:

P(di|cj; θ) = P(|di|)
|di|∏
k=1

P(wdik |cj; θ;wdiq , ∀q < k).

(4)
Next we make the standard naive Bayes assumption:

that the words of a document are generated indepen-
dently of context, that is, independently of the other
words in the same document given the class. We further
assume that the probability of a word is independent of
its position within the document. Thus, we can rewrite
Equation 4 more simply as:

P(di|cj; θ) = P(|di|)
|di|∏
k=1

P(wdik |cj; θ). (5)

The parameters of an individual mixture compo-
nent are the collection of word probabilities, such

that θwt|cj = P(wt|cj; θ), where t = {1, . . . , |V |} and∑
t P(wt|cj; θ) = 1. The other parameters of the model

are the class prior probabilities θcj = P(cj |θ), which in-
dicate the probabilities of selecting the different mixture
components. Document length is not parameterized be-
cause we assume it is independent of classification.

Given these underlying assumptions of how the data
is produced, the task of learning a text classifier con-
sists of forming an estimate of θ, written θ̂, based on a
set of training data. With labeled training documents,
D = {d1, . . . , d|D|}, we can calculate Bayes-optimal es-
timates for the parameters of the model that generated
these documents (Vapnik 1982). To calculate the prob-
ability of a word given a class, θwt|cj , simply count the
fraction of times the word occurs in the data for that
class, augmented with a Laplacean prior. This smooth-
ing prevents zero probabilities for infrequently occur-
ring words. These word probability estimates θ̂wt|cj are:

θ̂wt|cj =
1 +

∑|D|
i=1 N(wt, di)P(cj |di)

|V |+
∑|V |
s=1

∑|D|
i=1 N(ws, di)P(cj |di)

, (6)

where N(wt, di) is the count of the number of times
word wt occurs in document di and where P(cj |di) =
{0, 1}, given by the class label. The class prior probabil-
ities, θ̂cj , are estimated in the same fashion of counting,
but without smoothing:

θ̂cj =
∑|D|
i=1 P(cj |di)
|D| . (7)

Given estimates of these parameters calculated from
the training documents, it is possible to turn the gener-
ative model around and calculate the probability that
a particular component generated a given document.
We formulate this by an application of Bayes’ rule, and
then substitutions using Equations 1 and 5:

P(cj |di; θ̂) =
P(cj |θ̂)P(di|cj; θ̂)

P(di|θ̂)
(8)

=
P(cj |θ̂)

∏|di|
k=1 P(wdik |cj; θ̂)∑|C|

r=1 P(cr |θ̂)
∏|di|
k=1 P(wdik |cr; θ̂)

.

If the task is to classify a test document di into a single
class, simply select the class with the highest posterior
probability, arg maxj P(cj|di; θ̂).

Note that our assumptions about the generation of
text documents are all violated in practice, and yet
empirically, naive Bayes does a good job of classifying
text documents (Lewis & Ringuette 1994; Craven et al.
1998; Yang & Pederson 1997; Joachims 1997). This
paradox is explained by the fact that classification es-
timation is only a function of the sign (in binary cases)
of the function estimation (Domingos & Pazzani 1997;
Friedman 1997). Also note that our formulation of



naive Bayes assumes a multinomial event model for doc-
uments; this generally produces better text classifica-
tion accuracy than another formulation that assumes a
multi-variate Bernoulli (McCallum & Nigam 1998).

Incorporating Unlabeled Data with EM

When naive Bayes is given just a small set of labeled
training data, classification accuracy will suffer because
variance in the parameter estimates of the generative
model will be high. However, by augmenting this small
set with a large set of unlabeled data and combining the
two sets with EM, we can improve our parameter esti-
mates. As described in Table 1, EM alternately gener-
ates probabilistically-weighted labels for the unlabeled
documents, and a more probable model with smaller
parameter variance. EM finds a local maximum likeli-
hood parameterization using more data—both the la-
beled and the unlabeled. This section describes how to
use EM within the probabilistic framework of the pre-
vious section. This is a special case of the more general
missing values formulation, as presented by Ghahra-
mani and Jordan (1994).

We are given a set of training documents D and the
task is to build a classifier of the form in the previous
section. However, unlike previously, in this section we
assume that only some of the documents di ∈ Dl come
with class labels yi ∈ {1, . . . , |C|}, and for the rest of the
documents, in subset Du, the class labels are unknown.
Thus there is a disjoint partitioning of D, such that
D = Dl ∪ Du.

Consider the probability of all the training data, D.
The probability of all the data is simply the product
over all the documents, because each document is in-
dependent of the others given the model. Using Equa-
tion 1, this is:

P(D|θ) =
∏

di∈Du

|C|∑
j=1

P(cj |θ)P(di|cj; θ)

×
∏
di∈Dl

P(cyi |θ)P(di|cyi ; θ). (9)

For the unlabeled documents, we use a direct applica-
tion of Equation 1. For the labeled documents, we are
given the generative component by the label yi and thus
do not need to sum over all class components.

Again, learning a classifier in our context corre-
sponds to calculating a maximum likelihood estimate
of θ—finding the parameterization that is most likely
given our training data: arg max P(θ|D). By Bayes’
rule, P(θ|D) = P(D|θ)P(θ)/P(D). P(D) is a constant;
maximum likelihood estimation assumes that P(θ) is
a constant, so taking the log, we define the constant
η = log(P(θ)/P(D)). Maximizing the log likelihood is
the same as maximizing the likelihood. Using Equa-
tion 9 and Bayes rule, we write the log likelihood,
l(θ|D) ≡ log(P(θ|D)), as:

- Build an initial classifier by calculating θ̂ from the labeled
documents only (Equations 6 and 7).

- Loop while classifier parameters change:

- Use the current classifier to calculate probabilistically-
weighted labels for the unlabeled documents (Equa-
tion 8).

- Recalculate the classifier parameters θ̂ given the prob-
abilistically assigned labels (Equations 6 and 7).

Table 1: The Algorithm.

l(θ|D) = η +
∑
di∈Du

log
|C|∑
j=1

P(cj |θ)P(di|cj; θ)

+
∑
di∈Dl

log (P(cyi |θ)P(di|cyi; θ)) . (10)

Because the first line of this equation has a log of
sums, it is not computable in closed-form. However, if
we knew all the class labels, as in Dl, then we could
avoid this log of sums. Representing this potential
knowledge about the class labels as the matrix of bi-
nary indicator variables z, zi = 〈zi1, . . . , zi|C|〉, where
zij = 1 iff yi = j else zij = 0, we can express the
complete log likelihood of the parameters, lc(θ|D, z):

lc(θ|D, z) = η +
|D|∑
i=1

|C|∑
j=1

zij log (P(cj |θ)P(di|cj; θj)) .

(11)
This formulation of the log likelihood would be read-

ily computable in closed-form. Dempster, Laird and
Rubin (1977) use this insight in the formulation of the
Expectation-Maximization algorithm, which finds a lo-
cal maximum likelihood θ̂ by an iterative procedure that
recomputes the expected value of z and the maximum
likelihood parameterization given z. Note that for the
labeled documents zi is already known. It must be es-
timated for the unlabeled documents. If we denote the
expected value of z at iteration k, by Q(k), we can find
a local maximum for l(θ|D) by iterating the following
two steps:

• E-step: Set Q(k) = E[z|D; θ̂(k)].

• M-step: Set θ̂(k+1) = arg maxθ P(θ|D;Q(k)).
In practice, the E-step corresponds to calculating

probabilistic labels P(cj|di; θ̂) for every document by us-
ing the current estimate θ̂ and Equation 8. The M-step
corresponds to calculating a new maximum likelihood
estimate for θ given the current estimates for document
labels, P(cj|di; θ̂) using Equations 6 and 7. See Table 1
for an outline of our algorithm. In summary, EM finds
the θ̂ that locally maximizes the probability of all the
data, both the labeled and the unlabeled.



Experimental Results

In this section, we give empirical evidence that using
the algorithm in Table 1 outperforms traditional naive
Bayes. We present experimental results with three dif-
ferent text corpora.1

Datasets and Protocol
The 20 Newsgroups data set (Joachims 1997), col-

lected by Ken Lang, consists of 20,017 articles divided
almost evenly among 20 different UseNet discussion
groups. We remove words from a stoplist of common
short words and words that occur only once. When tok-
enizing this data, we skip the UseNet headers (thereby
discarding the subject line); tokens are formed from
contiguous alphabetic characters, which are left un-
stemmed. Best performance was obtained with no fea-
ture selection, and by normalizing word counts by docu-
ment length. Accuracy results are reported as averages
of ten test/train splits, with 20% of the documents ran-
domly selected for placement in the test set.

The WebKB data set (Craven et al. 1998) contains
web pages gathered from university computer science
departments. In this paper, we use the four most
populous entity-representing categories: student, fac-
ulty, course and project, all together containing 4199
pages. We did not use stemming or a stoplist; we
found that using a stoplist actually hurt performance
because, for example, “my” is the fourth-ranked word
by information gain, and is an excellent indicator of
a student homepage. As done previously (Craven
et al. 1998), we use only the 2000 most informa-
tive words, as measured by average mutual informa-
tion with the class variable (Yang & Pederson 1997;
Joachims 1997). Accuracy results presented below are
an average of twenty test/train splits, again randomly
holding out 20% of the documents for testing.

The ‘ModApte’ test/train split of the Reuters 21578
Distribution 1.0 data set consists of 12902 articles and
135 topic categories from the Reuters newswire. Fol-
lowing other studies (Joachims 1998) we present results
on the 10 most populous classes, building binary clas-
sifiers for each class that include all 134 other classes
in the negative category. We use a stoplist, but do
not stem. Vocabulary selection, when used, is again
performed with average mutual information with the
class variable. Results are reported as averages of ten
randomly selected subsets of ModApte’s training set.
The complete ModApte test set is used to calculate
precision-recall breakeven points, a standard informa-
tion retrieval measure for binary classification.

All experiments were performed with eight EM iter-
ations; significant changes occur in the first few iter-
ations. We never found classification accuracy to im-
prove beyond the eighth iteration.

1All three of these data sets are available on the
Internet. See http://www.cs.cmu.edu/∼textlearning and
http://www.research.att.com/∼lewis.
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Figure 1: Classification accuracy on the 20 Newsgroups
data set. The narrow error bars on each data point are
twice the standard error.

Results
Figure 1 shows the effect of using EM with unla-

beled data in the 20 Newsgroups data set. We vary the
amount of labeled training data, and compare the clas-
sification accuracy of traditional naive Bayes (no unla-
beled data) with an EM learner that has access to 10000
unlabeled documents. EM performs significantly bet-
ter. For example, with 300 labeled documents (15 doc-
uments per class), naive Bayes reaches 55% accuracy,
while EM achieves 70%—providing a 33% reduction in
error. Note here that EM performs well even with a
very small number of labeled documents; with only 20
documents (a single labeled document per class), naive
Bayes gets 19%, EM 39%. As expected, when there is a
lot of labeled data, and the naive Bayes learning curve
has flattened, having unlabeled data does not help.

These results demonstrate that EM finds a model
with more probable parameter estimates, and that these
improved estimates reduce classification accuracy and
the need for labeled training examples. For example,
to get 70% classification accuracy, EM requires 300 la-
beled examples, while naive Bayes requires 1000 labeled
examples to achieve the same accuracy.

To gain some intuition about why EM works, we
present a detailed trace of one example. Table 2 pro-
vides a window into the evolution of the classifier over
the course of EM iterations for this example. Based on
the WebKB data set, each column shows the ordered
list of words that the model believes are most “predic-
tive” of the course class. Words are judged to be “pre-
dictive” using a weighted log likelihood ratio. At Itera-
tion 0, the parameters were estimated from a randomly-
chosen single labeled document per class. Notice that
the course document seems to be about a specific Arti-
ficial Intelligence course at Dartmouth. After two EM
iterations with 2500 unlabeled documents, we see that
EM has used the unlabeled data to find words that are
more generally indicative of courses. The classifier cor-
responding to the first column gets 50% accuracy; by
the eighth (final) iteration, the classifier achieves 71%
accuracy.



Iteration 0 Iteration 1 Iteration 2
intelligence DD D
DD D DD
artificial lecture lecture
understanding cc cc
DDw D? DD:DD
dist DD:DD due
identical handout D?

rus due homework
arrange problem assignment
games set handout
dartmouth tay set
natural DDam hw
cognitive yurttas exam
logic homework problem
proving kfoury DDam
prolog sec postscript
knowledge postscript solution
human exam quiz
representation solution chapter
field assaf ascii

Table 2: Lists of the words most predictive of the course
class in the WebKB data set, as they change over iter-
ations of EM for a specific example. The symbol D
indicates an arbitrary digit.

The graph in Figure 2 shows the benefits of 2500
unlabeled documents on the WebKB data set. Again,
EM improves accuracy significantly, especially when the
amount of labeled data is small. When there are 12
labeled documents (three per class), traditional naive
Bayes attains 50% accuracy, while EM reaches 64%.
When there is a lot of labeled data, however, EM hurts
performance slightly.

Varying the Weight of the Unlabeled Data
We hypothesize that the reason EM hurts perfor-

mance here is that the data does not fit the assump-
tions of our model as well as 20 Newsgroups does—that
is, the generative components that best explain the un-
labeled data are not in good correspondence with the
class labels. As seen in Figure 2, EM can still help in
spite of somewhat violated assumptions when EM has
very little labeled training data, because parameter es-
timation is so desperate for guidance. However, when
there is enough labeled training data that the labeled
data alone is already sufficient for good parameter es-
timation, the estimates can be modestly thrown off by
EM’s incorporation of the unlabeled data. It is not sur-
prising that the unlabeled data can throw off parame-
ter estimation when one considers that the number of
unlabeled documents is always much greater than the
number of labeled documents (e.g. 2500 versus 280).
Thus, the great majority of the probability mass used
in the M-step actually comes from the unlabeled data.

This insight suggests a simple fix. We can add a
learning parameter that varies the relative contribu-
tions of the labeled and unlabeled data in the M-step.
In our implementation this parameter is embodied by a
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Figure 2: Classification accuracy on the WebKB data
set, both with and without 2500 unlabeled documents,
averaged over 20 trials per data point.

factor, 0 ≤ α ≤ 1, that reduces the weight of unlabeled
documents in the estimation of θwt|cj in Equation 6. In
essence, we can make each unlabeled document count
as only a fraction, α, of a document, thus correctly
balancing the “mass” of the labeled and unlabeled doc-
uments to optimize performance. We can build models
for varying values of α and choose the best value using
leave-one-out cross-validation on the training data after
EM has iterated to convergence.

Re-running the WebKB experiment in Figure 2 with α
selected by cross-validation provides two results of note:
(1) Cross-validation picks the optimal value most of the
time, and a near-optimal value otherwise. These opti-
mal values for α do not fall at the 0/1 extremes, and are
smaller when there is a lot of labeled data, and larger
when there is little. (2) The accuracy of this classifier is
equal to or slightly higher than the maximum of naive
Bayes and EM without α-tuning. This result indicates
that, even when our assumptions about the correspon-
dence between generative components and classes are
violated, we can automatically avoid any degradation
in accuracy when using EM, and can still preserve the
performance improvements seen when the labeled data
is scarce.

Multiple Generative Components per Class
Faced with data that does not fit the assumptions of

our model, the α-tuning approach described above ad-
dresses this problem by allowing the model to incremen-
tally ignore the unlabeled data. Another, more direct
approach is to change the model so that it more natu-
rally fits the data. Flexibility can be added to the map-
ping between generative components and class labels by
allowing multiple components per class—relaxing our
assumption about a one-to-one correspondence between
generative components and classes into a model with a
many-to-one correspondence. We expect this to im-
prove performance when data for each class is actually
multi-modal.

With an eye towards testing this hypothesis, we apply
EM to the Reuters corpus. Since the documents in this



Category NB 1 EM 1 EM 20 EM 40 Diff
acq 75.9 39.5 88.4 88.9 +13.0
corn 40.5 21.1 39.8 39.1 -0.7
crude 60.7 27.8 63.9 66.6 +5.9
earn 92.6 90.2 95.3 95.2 +2.7
grain 51.7 21.0 54.6 55.8 +4.1
interest 52.0 25.9 48.6 50.3 -1.7
money-fx 57.7 28.8 54.7 59.7 +2.0
ship 58.1 9.3 46.5 55.0 -3.1
trade 56.8 34.7 54.3 57.0 +0.2
wheat 48.9 13.0 42.1 44.2 -4.7

Table 3: Precision-Recall breakeven points showing per-
formance of binary classifiers on Reuters with tradi-
tional naive Bayes, EM with one generative component
per class, and EM with varying multi-component mod-
els for the negative class. The best multi-component
model is noted in bold, and the difference in perfor-
mance between it and naive Bayes is noted in the right-
most column.

data set can have multiple class labels, each category is
traditionally evaluated with a binary classifier. Thus,
the negative class covers 134 distinct categories, and we
expect that this task strongly violates the assumption
that all the data for the negative class is generated by a
single component. For these experiments, we randomly
selected 10 positively labeled documents, 40 negatively
labeled documents, and 7000 unlabeled documents.

The left column of Table 3 shows average precision-
recall breakeven points for naive Bayes. These numbers
are presented at the best vocabulary size for each task.
The second column of Table 3 shows the results of per-
forming EM on the data with a single negative gener-
ative component, as in previous experiments, without
α-tuning. As expected, EM’s results are dramatically
worse than traditional naive Bayes because fitting a sin-
gle naive Bayes component with EM to multi-modal
negative data does not accurately capture its distribu-
tion. However, by running EM on an appropriate model
with multiple components per class, we obtain results
that improve upon naive Bayes. The remainder of Ta-
ble 3 shows the effects of modeling the negative class
with 20 or 40 generative components. These compo-
nents are each initialized for EM with randomly as-
signed negative documents. A paired t-test on each trial
over all categories shows that the improvement in aver-
age breakeven point from 59.5% to 61.3% is statistically
significant (p < 0.0001).

These results indicate that correct model selection
is crucial for EM when there is not a simple one-
to-one correspondence between generative components
and classes. When the data is accurately modeled, EM
provides significant gains in performance. One obvious
question is how to select the best model. AutoClass
(Cheeseman & Stutz 1996) does this for unsupervised
clustering tasks by selecting the most probable model
given the data and a prior that prefers smaller mod-
els. For classification tasks, it may be more beneficial

to use classification accuracy with leave-one-out cross-
validation, as was successful for α-tuning.

Related Work

Two other studies use EM to combine labeled and
unlabeled data for classification (Miller & Uyar 1997;
Shahshahani & Landgrebe 1994). Instead of naive
Bayes, Shahshahani and Landgrebe use a mixture of
Gaussians; Miller and Uyar use Mixtures of Experts.
They demonstrate experimental results on non-text
data sets with up to 40 features. In contrast, our textual
data sets have three orders of magnitude more features.
Shahshahani and Landgrebe present a proof that un-
labeled data reduce variance in parameter estimation.
Their proof does not apply in our case, however, be-
cause our target concept can not be learned without
some labeled data. (There is no efficient estimator for
all parameters.)

Our work is an example of applying EM to fill in
missing values—the missing values are the class labels
of the unlabeled training examples. Ghahramani and
Jordan (1994) use EM with mixture models to fill in
missing values. The emphasis of their work is on miss-
ing feature values, where we focus on augmenting a very
small but complete set of labeled data.

The AutoClass project (Cheeseman & Stutz 1996)
investigates the combination of the EM algorithm with
an underlying model of a naive Bayes classifier. The
emphasis of their research is the discovery of novel clus-
terings for unsupervised learning over unlabeled data.
AutoClass has not been applied to text or classification.

Several other text classifiers have been used by oth-
ers in a variety of domains (Yang & Pederson 1997;
Joachims 1998; Cohen & Singer 1997). Naive Bayes has
a strong probabilistic foundation for EM, and is more
efficient for large data sets. The thrust of this paper is
to straightforwardly demonstrate the value of unlabeled
data; a similar approach could apply unlabeled data to
more complex classifiers.

Summary and Conclusions

This paper has explored the question of when and how
unlabeled data may be used to supplement scarce la-
beled data in machine learning problems, especially
when learning to classify text documents. This is an
important question in text learning, because of the high
cost of hand-labeling data and because of the availabil-
ity of huge volumes of unlabeled data. In this paper
we have presented a theoretical model, an algorithm,
and experimental results that show significant improve-
ments from using unlabeled documents for training clas-
sifiers in three real-world text classification tasks.

Our theoretical model characterizes a setting in which
unlabeled data can be used to boost the accuracy of
learned classifiers: when the probability distribution
that generates documents can be described as a mix-
ture distribution, and where the mixture components



correspond to the class labels. These conditions fit ex-
actly the model used by the naive Bayes classifier.

Since the complexity of natural language text will
not soon be completely captured by statistical models,
it is interesting to consider the sensitivity of a classi-
fier’s model to data that is inconsistent with that model.
We believe that our algorithm and others using unla-
beled data require a closer match between the data and
the model than those using only labeled data. When
the data is inconsistent with the assumptions of the
model, our method for adjusting the weight of the con-
tribution of unlabeled data, (as presented in our results
on WebKB), prevents the unlabeled data from hurting
classification accuracy. With our results on Reuters,
we study ways to improve the model so that it better
matches the assumptions about the correspondence be-
tween generative components and classes. The results
show improved classification accuracy, and suggest ex-
ploring the use of even more complex mixture models
that better correspond to textual data distributions.

We see several interesting directions for future work
using EM and unlabeled data. Work in progress sug-
gests that active learning can benefit from explicitly
modeling the unlabeled data by incorporating EM iter-
ations at every stage; this allows better selection of ex-
amples for which to request class labels from a labeler.
Also, an incremental learning algorithm that re-trains
throughout the testing phase could use the unlabeled
test data received early in the testing phase in order to
improve performance on later test data.

Other problem domains share some similarities with
text domains, and also have abundant unlabeled data
with limited, expensive labeled data. Robotics, vision,
and information extraction are three such domains. Ap-
plying the techniques in this paper could improve clas-
sification in these areas as well.
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