
Employing EM and Pool-Based Active Learning
for Text Classification

Andrew Kachites McCallum‡†

mccallum@justresearch.com
Kamal Nigam†

knigam@cs.cmu.edu
‡Just Research

4616 Henry Street
Pittsburgh, PA 15213

†School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper shows how a text classifier’s need
for labeled training documents can be re-
duced by taking advantage of a large pool
of unlabeled documents. We modify the
Query-by-Committee (QBC) method of ac-
tive learning to use the unlabeled pool for
explicitly estimating document density when
selecting examples for labeling. Then ac-
tive learning is combined with Expectation-
Maximization in order to “fill in” the class
labels of those documents that remain unla-
beled. Experimental results show that the
improvements to active learning require less
than two-thirds as many labeled training ex-
amples as previous QBC approaches, and
that the combination of EM and active learn-
ing requires only slightly more than half as
many labeled training examples to achieve
the same accuracy as either the improved ac-
tive learning or EM alone.

1 Introduction

Obtaining labeled training examples for text classifica-
tion is often expensive, while gathering large quantities
of unlabeled examples is usually very cheap. For ex-
ample, consider the task of learning which web pages
a user finds interesting. The user may not have the
patience to hand-label a thousand training pages as
interesting or not, yet multitudes of unlabeled pages
are readily available on the Internet.

This paper presents techniques for using a large pool
of unlabeled documents to improve text classification
when labeled training data is sparse. We enhance the

QBC active learning algorithm to select labeling re-
quests from the entire pool of unlabeled documents,
and explicitly use the pool to estimate regional doc-
ument density. We also combine active learning with
Expectation-Maximization (EM) in order to take ad-
vantage of the word co-occurrence information con-
tained in the many documents that remain in the un-
labeled pool.

In previous work [Nigam et al. 1998] we show that
combining the evidence of labeled and unlabeled doc-
uments via EM can reduce text classification error by
one-third. We treat the absent labels as “hidden vari-
ables” and use EM to fill them in. EM improves the
classifier by alternately using the current classifier to
guess the hidden variables, and then using the cur-
rent guesses to advance classifier training. EM con-
sequently finds the classifier parameters that locally
maximize the probability of both the labeled and un-
labeled data.

Active learning approaches this same problem in a dif-
ferent way. Unlike our EM setting, the active learner
can request the true class label for certain unlabeled
documents it selects. However, each request is consid-
ered an expensive operation and the point is to per-
form well with as few queries as possible. Active learn-
ing aims to select the most informative examples—in
many settings defined as those that, if their class la-
bel were known, would maximally reduce classifica-
tion error and variance over the distribution of exam-
ples [Cohn, Ghahramani, & Jordan 1996]. When cal-
culating this in closed-form is prohibitively complex,
the Query-by-Committee (QBC) algorithm [Freund et
al. 1997] can be used to select documents that have
high classification variance themselves. QBC measures
the variance indirectly, by examining the disagreement
among class labels assigned by a set of classifier vari-
ants, sampled from the probability distribution of clas-



sifiers that results from the labeled training examples.

This paper shows that a pool of unlabeled examples
can be used to benefit both active learning and EM.
Rather than having active learning choose queries by
synthetically generating them (which is awkward with
text), or by selecting examples from a stream (which
inefficiently models the data distribution), we advo-
cate selecting the best examples from the entire pool
of unlabeled documents (and using the pool to explic-
itly model density); we call this last scheme pool-based
sampling. In experimental results on a real-world text
data set, this technique is shown to reduce the need
for labeled documents by 42% over previous QBC ap-
proaches. Furthermore, we show that the combination
of QBC and EM learns with fewer labeled examples
than either individually—requiring only 58% as many
labeled examples as EM alone, and only 26% as many
as QBC alone. We also discuss our initial approach to
a richer combination we call pool-leveraged sampling
that interleaves active learning and EM such that EM’s
modeling of the unlabeled data informs the selection
of active learning queries.

2 Probabilistic Framework for Text
Classification

This section presents a Bayesian probabilistic frame-
work for text classification. The next two sections add
EM and active learning by building on this frame-
work. We approach the task of text classification
from a Bayesian learning perspective: we assume that
the documents are generated by a particular paramet-
ric model, and use training data to calculate Bayes-
optimal estimates of the model parameters. Then, we
use these estimates to classify new test documents by
turning the generative model around with Bayes’ rule,
calculating the probability that each class would have
generated the test document in question, and selecting
the most probable class.

Our parametric model is naive Bayes, which is
based on commonly used assumptions [Friedman 1997;
Joachims 1997]. First we assume that text documents
are generated by a mixture model (parameterized by
θ), and that there is a one-to-one correspondence be-
tween the (observed) class labels and the mixture com-
ponents. We use the notation cj ∈ C = {c1, ..., c|C|} to
indicate both the jth component and jth class. Each
component cj is parameterized by a disjoint subset
of θ. These assumptions specify that a document is
created by (1) selecting a class according to the prior
probabilities, P(cj |θ), then (2) having that class com-

ponent generate a document according to its own pa-
rameters, with distribution P(di|cj; θ). We can char-
acterize the likelihood of a document as a sum of total
probability over all generative components:

P(di|θ) =
|C|∑
j=1

P(cj |θ)P(di|cj; θ). (1)

Document di is considered to be an ordered list of word
events. We write wdik for the word in position k of doc-
ument di, where the subscript of w indicates an index
into the vocabulary V = 〈w1, w2, . . . , w|V |〉. We make
the standard naive Bayes assumption: that the words
of a document are generated independently of context,
that is, independently of the other words in the same
document given the class. We further assume that the
probability of a word is independent of its position
within the document. Thus, we can express the class-
conditional probability of a document by taking the
product of the probabilities of the independent word
events:

P(di|cj; θ) = P(|di|)
|di|∏
k=1

P(wdik |cj; θ), (2)

where we assume the length of the document, |di|,
is distributed independently of class. Each individ-
ual class component is parameterized by the collection
of word probabilities, such that θwt|cj = P(wt|cj; θ),
where t ∈ {1, . . . , |V |} and

∑
t P(wt|cj; θ) = 1. The

other parameters of the model are the class prior prob-
abilities θcj = P(cj|θ), which indicate the probabilities
of selecting each mixture component.

Given these underlying assumptions of how the data
are produced, the task of learning a text classifier con-
sists of forming an estimate of θ, written θ̂, based on a
set of training data. With labeled training documents,
D = {d1, . . . , d|D|}, we can calculate estimates for the
parameters of the model that generated these docu-
ments. To calculate the probability of a word given
a class, θwt|cj , simply count the fraction of times the
word occurs in the data for that class, augmented with
a Laplacean prior. This smoothing prevents probabil-
ities of zero for infrequently occurring words. These
word probability estimates θ̂wt|cj are:

θ̂wt |cj =
1 +

∑|D|
i=1 N(wt, di)P(cj |di)

|V |+
∑|V |
s=1

∑|D|
i=1 N(ws, di)P(cj |di)

, (3)



where N(wt, di) is the count of the number of times
word wt occurs in document di, and where P(cj |di) ∈
{0, 1}, given by the class label. The class prior proba-
bilities, θ̂cj , are estimated in the same fashion of count-
ing, but without smoothing:

θ̂cj =
∑|D|
i=1 P(cj |di)
|D| . (4)

Given estimates of these parameters calculated from
the training documents, it is possible to turn the gener-
ative model around and calculate the probability that
a particular class component generated a given docu-
ment. We formulate this by an application of Bayes’
rule, and then substitutions using Equations 1 and 2:

P(cj |di; θ̂) =
P(cj |θ̂)

∏|di|
k=1 P(wdik |cj; θ̂)∑|C|

r=1 P(cr |θ̂)
∏|di|
k=1 P(wdik |cr; θ̂)

. (5)

If the task is to classify a test document di into a single
class, simply select the class with the highest posterior
probability: arg maxj P(cj |di; θ̂).

Note that our assumptions about the generation of
text documents are all violated in practice, and yet
empirically, naive Bayes does a good job of clas-
sifying text documents [Lewis & Ringuette 1994;
Craven et al. 1998; Joachims 1997]. This para-
dox is explained by the fact that classification es-
timation is only a function of the sign (in binary
cases) of the function estimation [Friedman 1997;
Domingos & Pazzani 1997]. Also note that our for-
mulation of naive Bayes assumes a multinomial event
model for documents; this generally produces better
text classification accuracy than another formulation
that assumes a multi-variate Bernoulli [McCallum &
Nigam 1998].

3 EM and Unlabeled Data

When naive Bayes is given just a small set of labeled
training data, classification accuracy will suffer be-
cause variance in the parameter estimates of the gen-
erative model will be high. However, by augmenting
this small set with a large set of unlabeled data and
combining the two pools with EM, we can improve the
parameter estimates. This section describes how to
use EM to combine these pools within the probabilistic
framework of the previous section.

EM is a class of iterative algorithms for maximum like-
lihood estimation in problems with incomplete data

[Dempster, Laird, & Rubin 1977]. Given a model of
data generation, and data with some missing values,
EM alternately uses the current model to estimate the
missing values, and then uses the missing value esti-
mates to improve the model. Using all the available
data, EM will locally maximize the likelihood of the
generative parameters, giving estimates for the miss-
ing values.

In our text classification setting, we treat the class la-
bels of the unlabeled documents as missing values, and
then apply EM. The resulting naive Bayes parameter
estimates often give significantly improved classifica-
tion accuracy on the test set when the pool of labeled
examples is small [Nigam et al. 1998].1 This use of
EM is a special case of a more general missing values
formulation [Ghahramani & Jordan 1994].

In implementation, EM is an iterative two-step pro-
cess. The E-step calculates probabilistically-weighted
class labels, P(cj |di; θ̂), for every unlabeled document
using a current estimate of θ and Equation 5. The M-
step calculates a new maximum likelihood estimate for
θ using all the labeled data, both original and proba-
bilistically labeled, by Equations 3 and 4. We initialize
the process with parameter estimates using just the la-
beled training data, and iterate until θ̂ reaches a fixed
point. See [Nigam et al. 1998] for more details.

4 Active Learning with EM

Rather than estimating class labels for unlabeled doc-
uments, as EM does, active learning instead requests
the true class labels for unlabeled documents it selects.
In many settings, an optimal active learner should se-
lect those documents that, when labeled and incorpo-
rated into training, will minimize classification error
over the distribution of future documents. Equiva-
lently in probabilistic frameworks without bias, active
learning aims to minimize the expected classification
variance over the document distribution. Note that
Naive Bayes’ independence assumption and Laplacean
priors do introduce bias. However, variance tends to
dominate bias in classification error [Friedman 1997],
and thus we focus on reducing variance.

The Query-by-Committee (QBC) method of active
learning measures this variance indirectly [Freund et
al. 1997]. It samples several times from the classifier
parameter distribution that results from the training

1When the classes do not correspond to the natural clus-
ters of the data, EM can hurt accuracy instead of helping.
Our previous work also describes a method for avoiding
these detrimental effects.



data, in order to create a “committee” of classifier vari-
ants. This committee approximates the entire classi-
fier distribution. QBC then classifies unlabeled docu-
ments with each committee member, and measures the
disagreement between their classifications—thus ap-
proximating the classification variance. Finally, docu-
ments on which the committee disagrees strongly are
selected for labeling requests. The newly labeled doc-
uments are included in the training data, and a new
committee is sampled for making the next set of re-
quests. This section presents each of these steps in
detail, and then explains its integration with EM. Our
implementation of this algorithm is summarized in Ta-
ble 1.

Our committee members are created by sampling clas-
sifiers according to the distribution of classifier param-
eters specified by the training data. Since the prob-
ability of the naive Bayes parameters for each class
are described by a Dirichlet distribution, we sample
the parameters θwt|cj from the posterior Dirichlet dis-
tribution based on training data word counts, N(·, ·).
This is performed by drawing weights, vtj, for each
word wt and class cj from the Gamma distribution:
vtj = Gamma(αt + N(wt, cj)), where αt is always
1, as specified by our Laplacean prior. Then we set
the parameters θwt |cj to the normalized weights by
θwt|cj = vtj/

∑
s vsj. We sample to create a classifier k

times, resulting in k committee members. Individual
committee members are denoted by m.

We consider two metrics for measuring committee dis-
agreement. The previously employed vote entropy [Da-
gan & Engelson 1995] is the entropy of the class la-
bel distribution resulting from having each commit-
tee member “vote” with probability mass 1/k for its
winning class. One disadvantage of vote entropy is
that it does not consider the confidence of the com-
mittee members’ classifications, as indicated by the
class probabilities Pm(cj |di; θ̂) from each member.

To capture this information, we propose to mea-
sure committee disagreement for each document us-
ing Kullback-Leibler divergence to the mean [Pereira,
Tishby, & Lee 1993]. Unlike vote entropy, which com-
pares only the committee members’ top ranked class,
KL divergence measures the strength of the certainty
of disagreement by calculating differences in the com-
mittee members’ class distributions, Pm(C|di).2 Each

2While naive Bayes is not an accurate probability esti-
mator [Domingos & Pazzani 1997], naive Bayes classifica-
tion scores are somewhat correlated to confidence; the fact
that naive Bayes scores can be successfully used to make
accuracy/coverage trade-offs is testament to this.

• Calculate the density for each document. (Eq. 9)
• Loop while adding documents:

- Build an initial estimate of θ̂ from the labeled docu-
ments only. (Eqs. 3 and 4)

- Loop k times, once for each committee member:

+ Create a committee member by sampling for
each class from the appropriate Dirichlet distri-
bution.

+ Starting with the sampled classifier apply EM
with the unlabeled data. Loop while parameters
change:

· Use the current classifier to probabilistically
label the unlabeled documents. (Eq. 5)
· Recalculate the classifier parameters given

the probabilistically-weighted labels. (Eqs. 3
and 4)

+ Use the current classifier to probabilistically la-
bel all unlabeled documents. (Eq. 5)

- Calculate the disagreement for each unlabeled docu-
ment (Eq. 7), multiply by its density, and request the
class label for the one with the highest score.

• Build a classifier with the labeled data. (Eqs. 3 and 4).

• Starting with this classifier, apply EM as above.

Table 1: Our active learning algorithm. Traditional Query-
by-Committee omits the EM steps, indicated by italics,
does not use the density, and works in a stream-based set-
ting.

committee memberm produces a posterior class distri-
bution, Pm(C|di), where C is a random variable over
classes. KL divergence to the mean is an average of
the KL divergence between each distribution and the
mean of all the distributions:

1
k

k∑
m=1

D (Pm(C|di)||Pavg(C|di)) , (6)

where Pavg(C|di) is the class distribution mean
over all committee members, m: Pavg(C|di) =
(
∑
m Pm(C|di))/k.

KL divergence, D(·||·), is an information-theoretic
measure of the difference between two distributions,
capturing the number of extra “bits of information”
required to send messages sampled from the first dis-
tribution using a code that is optimal for the second.
The KL divergence between distributions P1(C) and
P2(C) is:

D(P1(C)||P2(C)) =
|C|∑
j=1

P1(cj) log
(

P1(cj)
P2(cj)

)
. (7)



After disagreement has been calculated, a document
is selected for a class label request. (Selecting more
than one document at a time can be a computational
convenience.) We consider three ways of selecting
documents: stream-based, pool-based, and density-
weighted pool-based. Some previous applications of
QBC [Dagan & Engelson 1995; Liere & Tadepalli 1997]
use a simulated stream of unlabeled documents. When
a document is produced by the stream, this approach
measures the classification disagreement among the
committee members, and decides, based on the dis-
agreement, whether to select that document for la-
beling. Dagan and Engelson do this heuristically by
dividing the vote entropy by the maximum entropy to
create a probability of selecting the document. Dis-
advantages of using stream-based sampling are that it
only sparsely samples the full distribution of possible
document labeling requests, and that the decision to
label is made on each document individually, irrespec-
tive of the alternatives.

An alternative that aims to address these problems
is pool-based sampling. It selects from among all
the unlabeled documents in a pool the one with the
largest disagreement. However, this loses one bene-
fit of stream-based sampling—the implicit modeling
of the data distribution—and it may select documents
that have high disagreement, but are in unimportant,
sparsely populated regions.

We can retain this distributional information by se-
lecting documents using both the classification dis-
agreement and the “density” of the region around
a document. This density-weighted pool-based sam-
pling method prefers documents with high classifica-
tion variance that are also similar to many other doc-
uments. The stream approach approximates this im-
plicitly; we accomplish this more accurately, (espe-
cially when labeling a small number of documents),
by modeling the density explicitly.

We approximate the density in a region around a par-
ticular document by measuring the average distance
from that document to all other documents. Distance,
Y , between individual documents is measured by using
exponentiated KL divergence:

Y (di, dh) = e−β D(P(W |dh) || (λP(W |di)+(1−λ)P(W))),
(8)

where W is a random variable over words in the
vocabulary; P(W |di) is the maximum likelihood es-
timate of words sampled from document di, (i.e.,

P(wt|di) = N(wt, di)/|di|); P(W ) is the marginal dis-
tribution over words; λ is a parameter that determines
how much smoothing to use on the encoding distribu-
tion (we must ensure no zeroes here to prevent infinite
distances); and β is a parameter that determines the
sharpness of the distance metric.

In essence, the average KL divergence between a docu-
ment, di, and all other documents measures the degree
of overlap between di and all other documents; expo-
nentiation converts this information-theoretic number
of “bits of information” into a scalar distance.

When calculating the average distance from di to all
other documents it is much more computationally ef-
ficient to calculate the geometric mean than the arith-
metic mean, because the distance to all documents
that share no words words with di can be calculated
in advance, and we only need make corrections for the
words that appear in di. Using a geometric mean, we
define density, Z of document di to be

Z(di) = e
1
|D|

∑
dh∈D

ln(Y (di,dh))
. (9)

We combine this density metric with disagreement by
selecting the document that has the largest product of
density (Equation 9) and disagreement (Equation 6).
This density-weighted pool-based sampling selects the
document that is representative of many other docu-
ments, and about which there is confident committee
disagreement.

Combining Active Learning and EM

Active learning can be combined with EM by run-
ning EM to convergence after actively selecting all the
training data that will be labeled. This can be under-
stood as using active learning to select a better start-
ing point for EM hill climbing, instead of randomly
selecting documents to label for the starting point. A
more interesting approach, that we term pool-leveraged
sampling, is to interleave EM with active learning, so
that EM not only builds on the results of active learn-
ing, but EM also informs active learning. To do this
we run EM to convergence on each committee mem-
ber before performing the disagreement calculations.
The intended effect is (1) to avoid requesting labels
for examples whose label can be reliably filled in by
EM, and (2) to encourage the selection of examples
that will help EM find a local maximum with higher
classification accuracy. With more accurate commit-
tee members, QBC should pick more informative doc-
uments to label. The complete active learning algo-



rithm, both with and without EM, is summarized in
Table 1.

Unlike settings in which queries must be generated
[Cohn 1994], and previous work in which the unlabeled
data is available as a stream [Dagan & Engelson 1995;
Liere & Tadepalli 1997; Freund et al. 1997], our as-
sumption about the availability of a pool of unlabeled
data makes the improvements to active learning pos-
sible. This pool is present for many real-world tasks
in which efficient use of labels is important, especially
in text learning.

5 Related Work

A similar approach to active learning, but without EM,
is that of Dagan and Engelson [1995]. They use QBC
stream-based sampling and vote entropy. In contrast,
we advocate density-weighted pool-based sampling
and the KL metric. Additionally, we select committee
members using the Dirichlet distribution over classi-
fier parameters, instead of approximating this with a
Normal distribution. Several other studies have inves-
tigated active learning for text categorization. Lewis
and Gale examine uncertainty sampling and relevance
sampling in a pool-based setting [Lewis & Gale 1994;
Lewis 1995]. These techniques select queries based on
only a single classifier instead of a committee, and thus
cannot approximate classification variance. Liere and
Tadepalli [1997] use committees of Winnow learners
for active text learning. They select documents for
which two randomly selected committee members dis-
agree on the class label.

In previous work, we show that EM with unlabeled
data reduces text classification error by one-third
[Nigam et al. 1998]. Two other studies have used
EM to combine labeled and unlabeled data without
active learning for classification, but on non-text tasks
[Miller & Uyar 1997; Shahshahani & Landgrebe 1994].
Ghahramani and Jordan [1994] use EM with mixture
models to fill in missing feature values.

6 Experimental Results

This section provides evidence that using a combina-
tion of active learning and EM performs better than
using either individually. The results are based on data
sets from UseNet and Reuters.3

3These data sets are both available on the In-
ternet. See http://www.cs.cmu.edu/∼textlearning and
http://www.research.att.com/∼lewis.

The Newsgroups data set, collected by Ken Lang, con-
tains about 20,000 articles evenly divided among 20
UseNet discussion groups [Joachims 1997]. We use
the five comp.* classes as our data set. When tokeniz-
ing this data, we skip the UseNet headers (thereby
discarding the subject line); tokens are formed from
contiguous alphabetic characters, removing words on
a stoplist of common words. Best performance was
obtained with no feature selection, no stemming, and
by normalizing word counts by document length. The
resulting vocabulary, after removing words that occur
only once, has 22958 words. On each trial, 20% of the
documents are randomly selected for placement in the
test set.

The ‘ModApte’ train/test split of the Reuters 21578
Distribution 1.0 data set consists of 12902 Reuters
newswire articles in 135 overlapping topic categories.
Following several other studies [Joachims 1998; Liere
& Tadepalli 1997] we build binary classifiers for each
of the 10 most populous classes. We ignore words on
a stoplist, but do not use stemming. The resulting vo-
cabulary has 19371 words. Results are reported on the
complete test set as precision-recall breakeven points,
a standard information retrieval measure for binary
classification [Joachims 1998].

In our experiments, an initial classifier was trained
with one randomly-selected labeled document per
class. Active learning proceeds as described in Table 1.
Newsgroups experiments were run for 200 active learn-
ing iterations, each round selecting one document for
labeling. Reuters experiments were run for 100 itera-
tions, each round selecting five documents for labeling.
Smoothing parameter λ is 0.5; sharpness parameter β
is 3. We made little effort to tune β and none to tune
λ. For QBC we use a committee size of three (k=3);
initial experiments show that committee size has lit-
tle effect. All EM runs perform seven EM iterations;
we never found classification accuracy to improve be-
yond the seventh iteration. All results presented are
averages of ten runs per condition.

The top graph in Figure 1 shows a comparison of dif-
ferent disagreement metrics and selection strategies
for QBC without EM. The best combination, density-
weighted pool-based sampling with a KL divergence to
the mean disagreement metric achieves 51% accuracy
after acquiring only 30 labeled documents. To reach
the same accuracy, unweighted pool-based sampling
with KL disagreement needs 40 labeled documents.
If we switch to stream-based, sampling, KL disagree-
ment needs 51 labelings for 51% accuracy. Our ran-
dom selection baseline requires 59 labeled documents.



30%

35%

40%

45%

50%

55%

60%

65%

70%

70%

80%

0 20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Number of Training Documents

pool-based density-weighted KL divergence
pool-based KL divergence

stream-based KL divergence
Random

stream-based vote entropy

30%

35%

40%

45%

50%

55%

60%

65%

70%

70%

80%

0 20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Number of Training Documents

QBC-then-EM
(Interleaved) QBC-with-EM

Random-then-EM
QBC

Random

Figure 1: On the top, a comparison of disagreement met-
rics and selection strategies for QBC shows that density-
weighted pool-based KL sampling does better than other
metrics. On the bottom, combinations of QBC and EM
outperform stand-alone QBC or EM. In these cases, QBC
uses density-weighted pool-based KL sampling. Note that
the order of the legend matches the order of the curves and
that, for resolution, the vertical axes do not range from 0
to 100.

Surprisingly, stream-based vote entropy does slightly
worse than random, needing 61 documents for the 51%
threshold. Density-weighted pool-based sampling with
a KL metric is statistically significantly better than
each of the other methods (p < 0.005 for each pairing).
It is interesting to note that the first several documents
selected by this approach are usually FAQs for the var-
ious newsgroups. Thus, using a pool of unlabeled data
can notably improve active learning.

In contrast to earlier work on part-of-speech tagging
[Dagan & Engelson 1995], vote entropy does not per-
form well on document classification. In our experi-
ence, vote entropy tends to select outliers—documents
that are short or unusual. We conjecture that this oc-
curs because short documents and documents consist-
ing of infrequently occurring words are the documents
that most easily have their classifications changed by
perturbations in the classifier parameters. In these
situations, classification variance is high, but the dif-

ference in magnitude between the classification score
of the winner and the losers is small. For vote en-
tropy, these are prime selection candidates, but KL
divergence accounts for the magnitude of the differ-
ences, and thus helps measure the confidence in the
disagreement. Furthermore, incorporating density-
weighting biases selection towards longer documents,
since these documents have word distributions that are
more representative of the corpus, and thus are consid-
ered “more dense.” It is generally better to label long
rather than short documents because, for the same la-
beling effort, a long document provides information
about more words. Dagan and Engelson’s domain,
part-of-speech tagging, does not have varying length
examples; document classification does.

Now consider the addition of EM to the learning
scheme. Our EM baseline post-processes random se-
lection with runs of EM (Random-then-EM). The most
straightforward method of combining EM and ac-
tive learning is to run EM after active learning com-
pletes (QBC-then-EM). We also interleave EM and
active learning, by running EM on each committee
member (QBC-with-EM). This also includes a post-
processing run of EM. In QBC, documents are selected
by density-weighted pool-based KL, as the previous ex-
periment indicated was best. Random selection (Ran-
dom) and QBC without EM (QBC) are repeated from
the previous experiment for comparison.

The bottom graph of Figure 1 shows the results of
combining EM and active learning. Starting with the
30 labeling mark again, QBC-then-EM is impressive,
reaching 64% accuracy. Interleaved QBC-with-EM lags
only slightly, requiring 32 labeled documents for 64%
accuracy. Random-then-EM is the next best performer,
needing 51 labeled documents. QBC, without EM,
takes 118 labeled documents, and our baseline, Ran-
dom, takes 179 labeled documents to reach 64% accu-
racy. QBC-then-EM and QBC-with-EM are not statis-
tically significantly different (p = 0.71 N.S.); these two
are each statistically significantly better than each of
the other methods at this threshold (p < 0.05).

These results indicate that the combination of EM
and active learning provides a large benefit. However,
QBC interleaved with EM does not perform better
than QBC followed by EM—not what we were expect-
ing. We hypothesize that while the interleaved method
tends to label documents that EM cannot reliably la-
bel on its own, these documents do not provide the
most beneficial starting point for EM’s hill-climbing.
In ongoing work we are examining this more closely
and investigating improvements.
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Figure 2: A comparison of random initial labeling and no
initial labeling when documents are selected with density-
weighted pool-based sampling. Note that no initial labeling
tends to dominate the random initial labeling cases.

Another application of the unlabeled pool to guiding
active learning is the selection of the initial labeled ex-
amples. Several previous implementations [Dagan &
Engelson 1995; Lewis & Gale 1994; Lewis 1995] sup-
pose that the learner is provided with a collection of
labeled examples at the beginning of active learning.
However, obtaining labels for these initial examples
(and making sure we have examples from each class)
can itself be an expensive proposition. Alternatively,
our method can begin without any labeled documents,
sampling from the Dirichlet distribution and select-
ing with density-weighted metrics as usual. Figure 2
shows results from experiments that begin with zero
labeled documents, and use the structure of the un-
labeled data pool to select initial labeling requests.
Interestingly, this approach is not only more conve-
nient for many real-world tasks, but also performs
better because, even without any labeled documents,
it can still select documents in dense regions. With
70 labeled documents, QBC initialized with one (ran-
domly selected) document per class attains an average
of 59% accuracy, while QBC initialized with none (re-
lying on density-weighted KL divergence to select all
70) attains an average of 63%. Performance also in-
creased with EM; QBC-with-EM rises from 69% to 72%
when active learning begins with zero labeled docu-
ments. Each of these differences is statistically signif-
icant (p < 0.005). Both with and without EM, this
method successfully finds labeling requests to cover all
classes. As before, the first requests tend to be FAQs
or similar, long, informative documents.

In comparison to previous active learning studies
in text classification domains [Lewis & Gale 1994;
Liere & Tadepalli 1997], the magnitude of our clas-
sification accuracy increase is relatively modest. Both
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Figure 3: Active learning results on three categories of
the Reuters data, corn, trade, and acq, respectively from
the top and in increasing order of frequency. Note that
active learning with committees outperforms random se-
lection and that the magnitude of improvement is larger
for more infrequent classes.

of these previous studies consider binary classifiers
with skewed distributions in which the positive class
has a very small prior probability. With a very in-
frequent positive class, random selection should per-
form extremely poorly because nearly all documents
selected for labeling will be from the negative class.
In tasks where the class priors are more even, random
selection should perform much better—making the im-
provement of active learning less dramatic. With an
eye towards testing this hypothesis, we perform a sub-
set of our previous experiments on the Reuters data
set, which has these skewed priors. We compare Ran-
dom against unweighted pool-based sampling (QBC)
with the KL disagreement metric.



Figure 3 shows results for three of the ten binary clas-
sification tasks. The frequencies of the positive classes
are 0.018, 0.038 and 0.184 for the corn (top), trade
(middle) and acq (bottom) graphs, respectively. The
class frequency and active learning results are repre-
sentative of the spectrum of the ten classes. In all
cases, active learning classification is more accurate
than Random. After 252 labelings, improvements of
accuracy over random are from 27% to 53% for corn,
48% to 68% for trade, and 85% to 90% for acq. The
distinct trend across all ten categories is that the less
frequently occurring positive classes show larger im-
provements with active learning. Thus, we conclude
that our earlier accuracy improvements are good, given
that with unskewed class priors, Random selection pro-
vides a relatively strong performance baseline.

7 Conclusions

This paper demonstrates that by leveraging a large
pool of unlabeled documents in two ways—using EM
and density-weighted pool-based sampling—we can
strongly reduce the need for labeled examples. In fu-
ture work, we will explore the use of a more direct ap-
proximation of the expected reduction in classification
variance across the distribution. We will consider the
effect of the poor probability estimates given by naive
Bayes by exploring other classifiers that give more re-
alistic probability estimates. We will also further in-
vestigate ways of interleaving active learning and EM
to achieve a more than additive benefit.
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