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Abstract

This paper shows how a text classifier’s need for
labeled training documents can be reduced by em-
ploying a large pool of unlabeled documents. We
modify the Query-by-Committee (QBC) method of
active learning to use the unlabeled pool by ex-
plicitly estimating document density when select-
ing examples for labeling. Then active learning is
combined with Expectation-Maximization in order
to “fill in” the class labels of those documents that
remain unlabeled. Experimental results show that
the improvements to active learning reduce the need
for labelings by one-third over previous QBC ap-
proaches, and that the combination of EM and ac-
tive learning requires only slightly more than half as
many labeled training examples to achieve the same
accuracy as either EM or active learning alone.

Introduction
Obtaining labeled training examples for text classifi-
cation is often expensive, while gathering large quan-
tities of unlabeled examples is usually very cheap.
For example, consider the task of learning which web
pages a user finds interesting. The user may not
have the patience to hand-label a thousand training
pages as interesting or not, yet multitudes of unla-
beled pages are readily available on the Internet.

This paper presents techniques for using a large
pool of unlabeled documents to improve text clas-
sification when labeled training data is sparse. We
enhance the QBC active learning algorithm by se-
lecting labeling requests from the entire pool of un-
labeled documents, and explicitly using the pool to
estimate regional document density. We also com-
bine active learning with Expectation-Maximization
(EM) in order to take advantage of the extensive
information contained in the many documents that
remain in the unlabeled pool.

In previous work [Nigam et al. 1998] we show
that combining the evidence of labeled and unla-
beled documents via EM can reduce text classifica-
tion error by one-third. We treat the absent labels
as “hidden variables” and use EM to fill them in.
EM improves the classifier by alternately using the
current classifier to guess the hidden variables, and
then using the current guesses to advance classifier
training—consequently finding the classifier param-
eters that locally maximize the probability of both
the labeled and unlabeled data.

Active learning approaches this same problem in
a different way. Unlike our EM setting, the active

learner can request the true class label for certain
unlabeled documents it selects. However, each re-
quest is considered an expensive operation and the
point is to perform well with as few queries as pos-
sible. Active learning aims to select the most infor-
mative examples—those that if their class label were
known, would maximally reduce classification error
and variance over the distribution of examples [Cohn
et al. 1996]. When calculating this in closed-form
is prohibitively complex, the Query-by-Committee
(QBC) algorithm [Freund et al. 1997] can be used to
select documents that have high classification vari-
ance themselves. QBC measures the variance indi-
rectly, by examining the disagreement among class
labels assigned by a set of classifier variants, sam-
pled from the probability distribution of classifiers
resulting from the labeled training examples.

This paper shows that a pool of unlabeled exam-
ples can be to used to good effect by both active
learning and EM. Rather than having active learn-
ing choose queries by synthetically generating them
(which is awkward with text), or by selecting exam-
ples from a stream (which inefficiently models the
data distribution), we advocate selecting the best ex-
amples from the entire pool of unlabeled documents
(and using the pool to explicitly model density)—
we call this last scheme pool-based sampling. In
experimental results on a real-world text data set,
this technique is shown to reduce the need for la-
beled documents by one-third over previous QBC
approaches. Furthermore, we show that the combi-
nation of QBC and EM learns with fewer labeled ex-
amples than either individually—requiring only 58%
as many labeled examples as EM alone, and only
25% as many as QBC alone. We also discuss work
in progress on a richer combination we call pool-
leveraged sampling that interleaves active learning
and EM such that EM’s modeling of the unlabeled
data informs the selection of active learning queries.

Naive Bayes and EM

This section presents a Bayesian probabilistic frame-
work for text classification and a method for incorpo-
rating unlabeled data within the framework by using
Expectation-Maximization. Our parametric model
is naive Bayes. First we assume that text documents
are generated by a mixture model, parameterized by
θ. The mixture model consists of generative compo-
nents cj ∈ C = {c1, ..., c|C|}. We assume each compo-
nent corresponds to a class; cj indicates both the jth



mixture component and the jth class. Thus a doc-
ument is created by (1) selecting a class according
to the prior probabilities, P(cj |θ), then (2) having
that class component generate a document according
to its own parameters, with distribution P(di|cj; θ).
We can characterize the likelihood of a document as
a sum of total probability over all generative com-
ponents, P(di|θ) =

∑|C|
j=1 P(cj |θ)P(di|cj; θ).

Document di is considered to be an ordered list of
word events. We write wdik for the word in position
k of document di, where the subscript of w indicates
an index into the vocabulary V = 〈w1, w2, . . . , w|V |〉.
We make the standard naive Bayes assumption: that
the words of a document are generated indepen-
dently of context, that is, independently of the other
words in the same document given the class. We fur-
ther assume that the probability of a word is inde-
pendent of its position within the document. Thus,
we can express the class-conditional probability of a
document by taking the product of the probabilities
of the independent word events:

P(di|cj; θ) = P(|di|)
|di|∏
k=1

P(wdik |cj; θ), (1)

where we assume the length of the document, |di|, is
distributed independently of class. Each individual
class component is parameterized by the collection
of word probabilities, such that θwt|cj = P(wt|cj; θ),
where t ∈ {1, . . . , |V |} and

∑
t P(wt|cj; θ) = 1. The

other parameters of the model are the class prior
probabilities θcj = P(cj |θ), which indicate the prob-
abilities of selecting each mixture component.

Given these underlying assumptions of how the
data is produced, the task of learning a text classi-
fier consists of forming an estimate of θ, written θ̂,
based on a set of training data. With labeled train-
ing documents, D = {d1, . . . , d|D|}, we can calculate
Bayes-optimal estimates for the parameters of the
model that generated these documents. To calcu-
late the probability of a word given a class, θwt |cj ,
simply count the fraction of times the word occurs in
the data for that class, augmented with a Laplacean
prior. This smoothing prevents zero probabilities for
infrequently occurring words. These word probabil-
ity estimates θ̂wt|cj are:

θ̂wt|cj =
1 +

∑|D|
i=1N(wt, di)P(cj |di)

|V |+
∑|V |
s=1

∑|D|
i=1 N(ws, di)P(cj |di)

, (2)

where N(wt, di) is the count of the number of
times word wt occurs in document di, and where
P(cj |di) = {0, 1}, given by the class label. The class
prior probabilities, θ̂cj , are estimated in the same
fashion of counting, but without smoothing:

θ̂cj =
∑|D|
i=1 P(cj |di)
|D| . (3)

Given estimates of these parameters calculated
from the training documents, it is possible to turn
the generative model around and calculate the prob-
ability that a particular component generated a
given document. We formulate this by an applica-
tion of Bayes’ rule, and then substitutions using the
equation for total probability and Equation 1:

P(cj |di; θ̂) =
P(cj |θ̂)

∏|di|
k=1 P(wdik |cj; θ̂)∑|C|

r=1 P(cr|θ̂)
∏|di|
k=1 P(wdik |cr; θ̂)

. (4)

If the task is to classify a test document di into a
single class, simply select the class with the highest
posterior probability: arg maxj P(cj |di; θ̂).

When naive Bayes is given just a small set of la-
beled training data, classification accuracy suffers
because parameter estimates of the generative model
are poor. However, by augmenting this small set
with a large set of unlabeled data and combining
the two pools with EM, we can improve our param-
eter estimates. EM is a class of iterative algorithms
for maximum likelihood estimation in problems with
incomplete data [Dempster et al. 1977]. Given a
model of data generation, and data with some miss-
ing values, EM converges to estimates of the miss-
ing values that locally maximize the likelihood of
the generative parameters. By treating the class la-
bels of the unlabeled data as missing values, and
running EM on the entire data set, the resulting pa-
rameter estimates give higher classification accuracy
for new documents when the pool of labeled exam-
ples is small [Nigam et al. 1998]. In practice, EM
is an iterative two-step process. The E-step calcu-
lates probabilistically-weighted class labels, P(cj|di),
for every unlabeled document using a current esti-
mate of θ and Equation 4. The M-step calculates
a new maximum likelihood estimate for θ using all
the labeled data, both original and probabilistically
labeled, by Equations 2 and 3. We initialize the
process with parameter estimates using just the la-
beled training data, and iterate until θ̂ reaches a
fixed point.

Active Learning with EM
Rather than estimating class labels for unlabeled
documents, as EM does, active learning instead re-
quests the true class labels for unlabeled documents
it selects. Optimally, an active learner selects those
documents that, when labeled and incorporated into
training, will minimize classification error over the
distribution of future documents. Equivalently in
probabilistic frameworks without bias, active learn-
ing aims to minimize the expected classification vari-
ance over the document distribution.

The Query-by-Committee (QBC) method of ac-
tive learning measures this variance indirectly [Fre-
und et al. 1997]. It samples several times from the
classifier parameter distribution that results from



the training data, in order to create a “commit-
tee” of classifier variants. This committee approx-
imates the entire classifier distribution. QBC then
classifies unlabeled documents with each committee
member, and measures the disagreement between
their classifications—thus approximating the classi-
fication variance. Finally, documents on which the
committee disagrees strongly are selected for label-
ing requests. The newly labeled documents are in-
cluded in the training data, and a new committee is
sampled for making the next set of requests. Our
implementation of this algorithm is summarized in
Table 1. This section presents each step of QBC in
detail, and then explains its integration with EM.

Our committee members are created by sampling
classifiers according to the distribution of classifier
parameters specified by the training data. Since
the probability of the naive Bayes parameters for
each class are described by a Dirichlet distribution,
we sample the parameters θwt|cj from the poste-
rior Dirichlet distribution based on training data
word counts, N(·, ·). This is performed by drawing
weights, vtj, for each word wt and class cj from the
Gamma distribution: vtj = Gamma(αt+N(wt, cj)),
where αt is always 1, as specified by our Laplacean
prior. Then we set the parameters θwt|cj to the nor-
malized weights by θwt|cj = vtj/

∑
s vsj . We sample

to create a classifier k times, resulting in k commit-
tee members. Individual committee members are
denoted by m.

We consider two metrics for measuring committee
disagreement. The previously employed vote entropy
[Dagan and Engelson 1995] is the entropy of the class
label distribution resulting from having each com-
mittee member “vote” with probability mass 1/k for
its winning class. One disadvantage of vote entropy
is that it does not consider the confidence of the
committee members’ classifications, as indicated by
the class probabilities P(cj |di; θ̂) from each member.

To capture this information, we propose to mea-
sure committee disagreement for each document us-
ing Kullback-Leibler divergence to the mean [Pereira
et al. 1993]. Unlike vote entropy, which compares
only the committee members’ top ranked class, KL
divergence measures the strength of the certainty
of disagreement by calculating differences in the
committee members’ class distributions, Pm(C|di).1
Each committee member m produces a posterior
class distribution, Pm(C|di), where C is a random
variable over classes. KL divergence to the mean is
an average of the KL divergence between each dis-
tribution and the mean of all the distributions:

1While naive Bayes is not an accurate probability es-
timator [Domingos and Pazzani 1997], naive Bayes clas-
sification scores are somewhat correlated to confidence;
the fact that naive Bayes scores can be successfully used
to make accuracy/coverage trade-offs is testament to
this.

• Calculate the density for each document. (Eq. 8)
• Loop while adding documents:

- Build an initial estimate of θ̂ from the labeled docu-
ments only. (Eqs. 2 and 3)

- Loop k times, once for each committee member:

+ Create a committee member by sampling for each
class from the appropriate Dirichlet distribution.
(Page 3)

+ Starting with the sampled classifier apply EM with
the unlabeled data. Loop while parameters change:

· Use the current classifier to probabilistically label
the unlabeled documents. (Eq. 4)
· Recalculate the classifier parameters given the

probabilistically-weighted labels. (Eqs. 2 and 3)

+ Use the current classifier to probabilistically label
all unlabeled documents. (Eq. 4)

- Calculate the disagreement for each unlabeled docu-
ment (Eq. 6), multiply by its density, and request the
class label for the one with the highest score.

• Build a classifier with the labeled data. (Eqs. 2 and 3).
• Starting with this classifier, apply EM as above.

Table 1: Our active learning algorithm. Traditional
Query-by-Committee omits the EM steps, indicated by
italics, and does not use the density.

1
k

k∑
m=1

D (Pm(C|di)||Pavg(C|di)) . (5)

where Pavg(C|di) is the class distribution mean
over all committee members: Pavg(C|di) =
(
∑
m Pm(C|di))/k.

KL divergence, D(·||·), is an information-theoretic
measure of the inefficiency of sending messages sam-
pled from the first distribution using a code that is
optimal for the second. The KL divergence between
distributions P1(C) and P2(C) is:

D(P1(C)||P2(C)) =
|C|∑
j=1

P1(cj) log
(

P1(cj)
P2(cj)

)
. (6)

After disagreement has been calculated, a doc-
ument is selected for a class label request. (Se-
lecting more than one document at a time can be
a computational convenience.) We consider three
ways of selecting documents: stream-based, pool-
based, and density-weighted pool-based. Previous
applications of QBC [Dagan and Engelson 1995;
Liere and Tadepalli 1997] use a simulated stream
of unlabeled documents. When a document is pro-
duced by the stream, this approach measures the
classification disagreement among the committee
members, and decides, based on the disagreement,
whether to select that document for labeling. Dagan
and Engelson do this by heuristically scaling the vote
entropy score to a probability of selecting the docu-
ment. Disadvantages of using stream-based sampling



are that it only sparsely samples the full distribution
of possible document labeling requests, and that the
decision to label is made on each document individ-
ually, irrespective of the alternatives. Thus finding
the very best requests is elusive.

An alternative that aims to address these prob-
lems is pool-based sampling. It selects from among all
the unlabeled documents in a pool the one with the
largest disagreement. However, this loses one benefit
of stream-based sampling—the implicit modeling of
the data distribution—and it may select documents
that have high disagreement, but are in unimpor-
tant, sparsely populated regions.

We can retain this distributional information by
selecting documents using both the classification dis-
agreement and the “density” of the region around
a document. This third selection method prefers
documents with high classification variance that are
also similar to many other documents. The stream
approach approximates this implicitly; we accom-
plish this more accurately, (especially when labeling
a small number of documents), by modeling the den-
sity explicitly.

We approximate the density in a region around a
particular document by measuring the average dis-
tance from that document to all other documents.
Distance, Y , between individual documents is mea-
sured by using exponentiated KL divergence:

Y (di, dh) = e−β D(P(W |dh) || (λP(W |di)+(1−λ)P(W))),
(7)

where W is a random variable over words in the
vocabulary; P(W |di) is the maximum likelihood es-
timate of words sampled from document di, (i.e.,
P(wt|di) = N(wt, di)/|di|); P(W ) is the marginal
distribution over words; λ is a parameter that deter-
mines how much smoothing to use on the encoding
distribution (we must ensure no zeroes here to pre-
vent infinite distances); and β is a parameter that
determines the sharpness of the distance metric.

In essence, the average KL divergence between a
document, di, and all other documents measures the
degree to which a class label on di informs the clas-
sifier about all other documents. When calculating
the average distance from di to all other documents
it is much more computationally efficient to calcu-
late the geometric mean than the arithmetic mean,
because the distance to all documents that share no
words words with di can be calculated in advance,
and we only need make corrections for the words
that appear in di.2 Using a geometric mean, we de-
fine density, Z of document di to be

Z(di) = e
1
|D|

∑
dh∈D

ln(Y (di,dh))
. (8)

2In the same vein, using KL divergence to the mean
instead of KL divergence to calculate Y would have
avoided the need for the λ parameter, but, doing so
would have precluded efficient calculation of the average.

We combine this density metric with disagreement
by selecting the document that has the largest prod-
uct of density (Equation 8) and disagreement (Equa-
tion 5). This density-weighted pool-based sampling
selects the document that is representative of many
other documents, and about which there is confident
committee disagreement.

Combining Active Learning and EM
Active learning can be combined with EM by run-

ning EM to convergence after actively selecting all
the training data that will be labeled. This can be
understood as using active learning to select a bet-
ter starting point for EM hill climbing, instead of
randomly selecting documents to label for the start-
ing point. A more interesting approach, we term
pool-leveraged sampling, is to interleave EM with ac-
tive learning, so that EM not only builds on the
results of active learning, but EM also informs ac-
tive learning. To do this we run EM to convergence
on each committee member before performing the
disagreement calculations. The intended effect is
(1) to avoid requesting labels for examples whose
label can be reliably filled in by EM, and (2) to
encourage the selection of examples that will help
EM find a local maximum with higher classification
accuracy. With more accurate committee members,
QBC should pick more informative documents to la-
bel. The complete active learning algorithm, both
with and without EM, is summarized in Table 1.

Unlike settings in which queries must be gen-
erated [Cohn 1994], and previous work in which
the unlabeled data is available as a stream [Da-
gan and Engelson 1995; Liere and Tadepalli 1997;
Freund et al. 1997], our assumption about the avail-
ability of a pool of unlabeled data makes the leverage
possible. This pool is present for many real-world
tasks in which efficient use of labels is important,
especially in text learning.

Related Work

A similar approach to active learning, but without
EM, is that of Dagan and Engelson [1995]. They use
QBC stream-based sampling and vote entropy; in
contrast, we advocate density-weighted pool-based
sampling and a KL metric. Additionally, we select
committee members using the Dirichlet distribution
over classifier parameters, instead of approximating
this with a Normal distribution. Several other stud-
ies have investigated active learning for text catego-
rization. Lewis and Gale examine uncertainty sam-
pling and relevance sampling [Lewis and Gale 1994;
Lewis 1995]. These pool-based techniques select
queries based on only a single classifier instead of a
committee, and thus cannot approximate classifica-
tion variance reduction. Liere and Tadepalli [1997]
use committees of Winnow learners for active text
learning. They select documents for which two ran-



domly selected committee members disagree on the
class label.

In previous work, we show that EM with un-
labeled data reduces text classification error by
one-third [Nigam et al. 1998]. Two other stud-
ies have used EM to combine labeled and unla-
beled data without active learning for classifica-
tion, but on non-text tasks [Miller and Uyar 1997;
Shahshahani and Landgrebe 1994]. Ghahramani
and Jordan [1994] use EM with mixture models to
fill in missing feature values.

Experimental Results
This section provides empirical evidence that using
a combination of active learning and EM does better
than using either individually. The Newsgroups data
set, collected by Ken Lang, contains about 20,000
articles evenly divided among 20 UseNet discussion
groups [Joachims 1997]. We use the five comp.*
classes as our data set. When tokenizing this data,
we skip the UseNet headers (thereby discarding the
subject line); tokens are formed from contiguous al-
phabetic characters. Best performance was obtained
with no feature selection, no stemming, and by nor-
malizing word counts by document length. The re-
sulting vocabulary, after removing words that occur
only once, has 22958 words. On each trial, 20% of
the documents are randomly selected for placement
in the test set.

In our experiments an initial classifier was trained
with one random document per class. Active learn-
ing proceeds as described in Table 1. Experiments
were run for 200 active learning iterations. Smooth-
ing parameter λ is 0.5; sharpness parameter β is 3.
For QBC we use a committee size of three (k=3);
initial experiments show that committee size has lit-
tle effect. All EM runs perform seven EM iterations;
we never found classification accuracy to improve be-
yond the seventh iteration. All results presented are
averages of ten runs per condition.

The top graph in Figure 1 shows a comparison of
different disagreement metrics and selection strate-
gies for QBC without EM. Random selection is the
standard baseline, requiring 133 labeled documents
to reach 60% accuracy. Surprisingly, stream-based
vote entropy does slightly worse than random, re-
quiring 139 labeled documents. If we use stream-
based KL divergence to the mean to more finely mea-
sure the disagreement, we improve on random some-
what, requiring 122 documents for 60% accuracy. If
we then switch from stream-based sampling to pool-
based sampling, each round selecting the document
from the pool with the most disagreement, we get
a large improvement, needing only 90 documents
for pool-based KL divergence to the mean. When
we then add density-weighting to the pool-based
scheme, to explicitly model the distribution, the re-
sults are best, requiring only 81 labeled documents
to achieve 60% accuracy. It is interesting to note
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Figure 1: On the top, a comparison of disagreement met-
rics and selection strategies for QBC shows that density-
weighted pool-based KL sampling does better than other
metrics. On the bottom, combinations of QBC and
EM outperform stand-alone QBC or EM. All have faster
learning rates than random example selection. In these
cases, QBC uses density-weighted pool-based KL sam-
pling. Note that the order of the legend matches the
order of the curves and that, for resolution, the vertical
axes do not range from 0 to 100.

that the first several documents selected by density-
weighted pool-based sampling are usually FAQs for
the various newsgroups.

In contrast to earlier work on part-of-speech tag-
ging [Dagan and Engelson 1995], vote entropy does
not give good performance on document classifica-
tion. In our experience, vote entropy tends to select
outliers—documents that are short or unusual. We
conjecture that this occurs because short documents
and documents consisting of infrequently occurring
words are the documents that most easily have their
classifications changed by perturbations in the clas-
sifier parameters. In these situations, classification
variance is high, but the difference in magnitude be-
tween the classification score of the winner and the
losers is small. For vote entropy, these are prime
selection candidates, but KL divergence accounts
for the magnitude of the differences, and thus helps
measure the confidence in the disagreement. Fur-
thermore, incorporating density-weighting biases se-
lection towards longer documents, since these doc-
uments have word distributions that are more rep-



resentative of the corpus, and thus are considered
“more dense.” It is generally better to label long
rather than short documents because, for the same
labeling effort, a long document provides informa-
tion about more words. Dagan and Engelson’s do-
main, part-of-speech tagging, does not have varying
length examples; document classification does.

Now we consider the addition of EM to the learn-
ing scheme. Our EM baseline post-processes random
selection with runs of EM (Random-then-EM). The
most straightforward method of combining EM and
active learning is to run EM after active learning
completes (QBC-then-EM). We also interleave EM
and active learning, by running EM on each com-
mittee member (QBC-with-EM). This also includes
a post-processing run of EM. In QBC, documents
are selected by density-weighted pool-based KL, as
the previous experiment indicated was appropriate.
Random selection (Random) and QBC without EM
(QBC) are repeated from the previous experiment
for comparison.

The bottom graph of Figure 1 shows the results
of combining EM and active learning. As expected,
Random selection and straight QBC give the slowest
learning rates: 203 and 131 labeled documents to
reach 65% accuracy respectively. Random-then-EM
improves upon both; it needs 55 labelings to reach
65%. Interleaved QBC-with-EM is impressive, need-
ing only 38 labelings. QBC-then-EM does slightly
better than QBC-with-EM at this accuracy, needing
32 documents—less than 20% of the training data
as random, less than 25% of the labeled examples as
QBC alone, and 58% of the labeled examples as EM
alone.

These results indicate that the combination of EM
and active learning provides a large benefit. How-
ever, QBC interleaved with EM does not perform
better than QBC followed by EM—not what we
were expecting. We hypothesize that while the in-
terleaved method tends to label documents that EM
cannot reliably label on its own, these documents
do not provide the most beneficial starting point for
EM’s hill-climbing. In ongoing work we are exam-
ining this more closely and investigating improve-
ments.

Conclusions
This paper demonstrates that by leveraging a large
pool of unlabeled documents in two ways—using EM
and density-weighted pool-based sampling—we can
strongly reduce the need for labeled examples. In
future work, we will explore using a more direct ap-
proximation of the expected reduction in classifica-
tion variance across the distribution. We will test
the hypothesis that the magnitude of active learn-
ing gains is related to the skew of the class priors.
We will also further investigate ways of interleav-
ing active learning and EM to achieve a more than
additive benefit.
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