
A Machine Learning Approach to Building
Domain-Specific Search Engines

Andrew McCallum‡†

mccallum@justresearch.com
Kamal Nigam†

knigam@cs.cmu.edu
Jason Rennie†

jr6b@andrew.cmu.edu
Kristie Seymore†

kseymore@ri.cmu.edu
‡Just Research

4616 Henry Street
Pittsburgh, PA 15213

†School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Domain-specific search engines are becoming
increasingly popular because they offer in-
creased accuracy and extra features not pos-
sible with general, Web-wide search engines.
Unfortunately, they are also difficult and time-
consuming to maintain. This paper proposes
the use of machine learning techniques to
greatly automate the creation and maintenance
of domain-specific search engines. We describe
new research in reinforcement learning, text
classification and information extraction that
enables efficient spidering, populates topic hi-
erarchies, and identifies informative text seg-
ments. Using these techniques, we have built
a demonstration system: a search engine for
computer science research papers available at
www.cora.justresearch.com.

1 Introduction
As the amount of information on the World Wide Web
grows, it becomes increasingly difficult to find just what
we want. While general-purpose search engines such as
AltaVista and HotBot offer high coverage, they often pro-
vide only low precision, even for detailed queries.

When we know that we want information of a cer-
tain type, or on a certain topic, a domain-specific
search engine can be a powerful tool. For exam-
ple, www.campsearch.com allows complex queries over
summer camps by age-group, size, location and cost.
Performing such searches with a traditional, general-
purpose search engine would be extremely tedious or
impossible. For this reason, domain-specific search en-
gines are becoming increasingly popular. Unfortunately,
building these search engines is a labor-intensive process,
typically requiring significant and ongoing human effort.

This paper describes the Ra Project—an effort to auto-
mate many aspects of creating and maintaining domain-
specific search engines by using machine learning tech-
niques. These techniques allow search engines to be
created quickly with minimal effort, and are suited for
re-use across many domains. This paper presents ma-
chine learning methods for efficient topic-directed spider-

ing, building a browsable topic hierarchy, and extracting
topic-relevant substrings. These are briefly described in
the following three paragraphs.

Every search engine must begin with a collection
of documents to index. When aiming to populate a
domain-specific search engine, a web-crawling spider
need not explore the Web indiscriminantly, but should
explore in a directed fashion to find domain-relevant doc-
uments efficiently. We frame the spidering task in a rein-
forcement learning framework [Kaelbling et al., 1996], al-
lowing us to mathematically define “optimal behavior.”
Our experimental results show that a simple reinforce-
ment learning spider is three times more efficient than a
spider using breadth-first search.

Search engines often provide a browsable topic hierar-
chy; Yahoo is the prototypical example. Automatically
adding documents into a topic hierarchy can be posed as
a text classification task. We present extensions to the
naive Bayes text classifier (e.g. [McCallum et al., 1998])
that use no hand-labeled training data, yet still result in
accurate classification. Using only unlabeled data, the
hierarchy and a few keywords for each category, the algo-
rithm combines naive Bayes, hierarchical shrinkage and
Expectation-Maximization. It places documents into a
70-leaf computer science hierarchy with 66% accuracy—
performance approaching human agreement levels.

Extracting topic-relevant pieces of information from
the documents of a domain-specific search engine al-
lows the user to search over these features in a way that
general search engines cannot. Information extraction,
the process of automatically finding specific textual sub-
strings in a document, is well suited to this task. We
approach information extraction with techniques used
in statistical language modeling and speech recognition,
namely hidden Markov models [Rabiner, 1989]. Our al-
gorithm extracts fields such as title, authors, and affilia-
tion from research paper headers with 91% accuracy.

We have brought all the above-described machine
learning techniques together in Cora, a publicly-available
search engine on computer science research papers
(www.cora.justresearch.com). An intelligent spider starts
from the home pages of computer science departments
and laboratories and collects links to postscript docu-
ments. These documents are converted to plain text

Figure 1: A screen shot of the query results page of the
Cora search engine. Note the topic hierarchy and the
extracted paper titles, authors and abstracts.

and further processed if they are determined to be re-
search papers (e.g. by having Abstract and Reference
sections). Important identifying information such as the
title and author is then extracted from the head of each
paper, as well as the bibliography section. The extracted
results are used to group citations to the same paper
together and to build a citation graph. Phrase and
keyword search facilities over the collected papers are
provided, as well as a computer science topic hierarchy
which lists the most-cited papers in each research topic.
Figure 1 shows the results of a search query as well as the
topic hierarchy. Our hope is that, in addition to provid-
ing a platform for machine learning research, this search
engine will become a valuable tool for other computer
scientists. The following sections describe the new re-
search that makes Cora possible; more detail is provided
in McCallum et al. [1999] and by other papers available
at Cora’s web page.

2 Efficient Spidering
In Cora, efficient spidering is a significant concern. Many
of the pages in CS department web sites are about
courses and administration, not research papers. While
a general-purpose search engine should index all pages,
and might use breadth-first search to collect documents,
Cora need only index a small subset. Avoiding whole
regions of departmental web graphs can significantly im-
prove efficiency and increase the number of research pa-
pers found given a finite amount of time.

For a formal setting in which to frame the problem

of efficient spidering, we turn to reinforcement learn-
ing. Reinforcement learning is a framework for learn-
ing optimal decision-making from rewards or punishment
[Kaelbling et al., 1996]. The agent learns a policy that
maps states to actions in an effort to maximize its re-
ward over time. We use the infinite-horizon discounted
model where reward over time is a geometrically dis-
counted sum in which the discount, 0 ≤ γ < 1, devalues
rewards received in the future. A Q-function repre-
sents the policy by mapping state-action pairs to their
expected discounted reward. Policy decisions are made
by selecting the action with the largest Q-value.

As an aid to understanding how reinforcement learn-
ing relates to spidering, consider the common reinforce-
ment learning task of a mouse exploring a maze to find
several pieces of cheese. The agent receives immediate
reward for finding each piece of cheese, and has actions
for moving among the grid squares of the maze. The
state is both the position of the mouse and the locations
of the cheese pieces remaining to be consumed (since the
cheese can only be consumed and provide reward once).
Note that in order to act optimally, the agent must con-
sider future rewards.

In the spidering task, the on-topic documents are im-
mediate rewards, like the pieces of cheese. An action is
following a particular hyperlink. The state is the set of
on-topic documents remaining to be consumed, and the
set of hyperlinks that have been discovered. The key fea-
ture of topic-specific spidering that makes reinforcement
learning the proper framework is that the environment
presents situations with delayed reward.

The problem now is how to practically apply reinforce-
ment learning to spidering. The state-space is enormous
and does not allow the spider to generalize to hyperlinks
that it has not already seen. Hence, we make simpli-
fying assumptions that (1) disregard state and (2) cap-
ture the relevant distinctions between actions using only
the words found in the neighborhood of the correspond-
ing hyperlink. Thus our Q-function becomes a mapping
from a “bag-of-words” to a scalar.

We represent the mapping using a collection of naive
Bayes text classifiers (see Section 3.1), and cast this re-
gression problem as classification. We discretize the dis-
counted sum of future reward values of our training data
into bins, place each hyperlink into the bin correspond-
ing to its Q-value (calculated as described below), and
use the text in the hyperlink’s anchor and surrounding
page as training data for the classifier. At test time, the
estimated Q-value of a hyperlink is the weighted aver-
age of each bin’s average Q-value, using the classifier’s
probabilistic class memberships as weights.

Other systems have also studied spidering, but with-
out a framework defining optimal behavior. For exam-
ple, Arachnid [Menczer, 1997] does so with a collection
of competitive, reproducing and mutating agents. Addi-
tionally, there are systems that use reinforcement learn-
ing for non-spidering Web tasks. WebWatcher [Joachims
et al., 1997] is a browsing assistant that uses a combi-
nation of supervised and reinforcement learning to rec-

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

 R
es

ea
rc

h
P

ap
er

s
F

ou
nd

Percent Hyperlinks Followed

Spidering CS Departments

RL Immediate
RL Future

Breadth-First

Figure 2: Average performance of two reinforcement
learning spiders versus traditional breadth-first search.

ommend relevant hyperlinks to the user. Laser uses
reinforcement learning to tune the search parameters of
a search engine [Boyan et al., 1996].

2.1 Experimental Results
In August 1998 we fully mapped the CS department web
sites at Brown University, Cornell University, University
of Pittsburgh and University of Texas. They include
53,012 documents and 592,216 hyperlinks. We perform
four test/train splits, where the data from three univer-
sities is used to train a spider that is tested on the fourth.
The target pages (for which a reward of 1 is given) are
computer science research papers, identified separately
by a simple hand-coded algorithm with high precision.

We currently train the agent off-line. We find all tar-
get pages in the training data, and calculate the Q-value
associated with each hyperlink as the discounted sum
of rewards that result from executing the optimal pol-
icy (as determined by full knowledge of the web graph).
The agent could also learn from experience on-line us-
ing TD-λ. A spider is evaluated on each test/train split
by having it spider the test university, starting at the
department’s home page. In Figure 2 we report results
from traditional Breadth-First search as well as two dif-
ferent reinforcement learners. Immediate uses γ = 0,
and represents the Q-function as a binary classifier be-
tween immediate rewards and other hyperlinks. Future
uses γ = 0.5, and represents the Q-function with a more
finely-discriminating 3-bin classifier that uses future re-
wards.

At all times during its progress, both reinforcement
learning spiders have found more research papers than
breadth-first search. One measure of performance is the
number of hyperlinks followed before 75% of the research
papers are found. Both reinforcement learners are signif-
icantly more efficient, requiring exploration of less than
16% of the hyperlinks; in comparison, Breadth-first re-
quires 48%. This represents a factor of three increase in
spidering efficiency.

Note that the Future reinforcement learning spider

performs better than the Immediate spider in the begin-
ning, when future reward must be used to select among
alternative branches, none of which give immediate re-
ward. On average the Immediate spider takes nearly
three times as long as Future to find the first 28 (5%)
of the papers. However, after the first 50% of the papers
are found, the Immediate spider performs slightly better,
because many links with immediate reward have been
discovered, and the Immediate spider recognizes them
more accurately. In ongoing work we are improving the
accuracy of the classification when there is future reward
and a larger number of bins. We have also run experi-
ments on tasks with a single target page, where future
reward decisions are more crucial. In this case, the Fu-
ture spider retrieves target pages twice as efficiently as
the Immediate spider [Rennie and McCallum, 1999].

3 Classification into a Hierarchy by
Bootstrapping with Keywords

Topic hierarchies are an efficient way to organize and
view large quantities of information that would other-
wise be cumbersome. As Yahoo has shown, a topic
hierarchy can be an integral part of a search engine. For
Cora, we have created a 70-leaf hierarchy of computer sci-
ence topics, the top part of which is shown in Figure 1.
Creating the hierarchy structure and selecting just a few
keywords associated with each node took about three
hours, during which an expert examined conference pro-
ceedings and computer science Web sites.

A much more difficult and time-consuming part of cre-
ating a hierarchy is placing documents into the correct
topic nodes. Yahoo has hired many people to catego-
rize web pages into their hierarchy. In contrast, ma-
chine learning can automate this task with supervised
text classification. However, acquiring enough labeled
training documents to build an accurate classifier is of-
ten prohibitively expensive.

In this paper, we ease the burden on the classifier
builder by using only unlabeled data, some keywords
and the class hierarchy. Instead of asking the builder
to hand-label training examples, the builder simply pro-
vides a few keywords for each category. A large collection
of unlabeled documents are then preliminarily labeled
by using the keywords as a rule-list classifier (searching
a document for each keyword and placing it in the class
of the first keyword found). These preliminary labels
are noisy, and many documents remain unlabeled. How-
ever, we then bootstrap an improved classifier. Using the
documents and preliminary labels, we initialize a naive
Bayes text classifier from the preliminary labels. Then,
Expectation-Maximization [Dempster et al., 1977] esti-
mates labels of unlabeled documents and re-estimates
labels of keyword-labeled documents. Statistical shrink-
age is also incorporated in order to improve parameter
estimates by using the class hierarchy. In this paper we
combine for the first time in one document classifier both
EM for unlabeled data and hierarchical shrinkage.

3.1 Bayesian Text Classification
We use the framework of multinomial naive Bayes text
classification. The parameters of this model are, for each
class cj , the frequency with which each word wt occurs,
P(wt|cj), and the relative document frequency of each
class, P(cj). Given estimates of these parameters and a
document di, we can determine the probability that it
belongs in class cj by Bayes’ rule:

P(cj |di) ∝ P(cj)
|di|∏
k=1

P(wdik |cj), (1)

where wdik is the word wt that occurs in the kth posi-
tion of document di. Training a standard naive Bayes
classifier requires a set of documents, D, and their class
labels. The estimate of a word frequency is simply the
smoothed frequency with which the word occurs in train-
ing documents from the class:

P(wt|cj)=
1 +

∑
di∈D N(wt, di)P(cj |di)

|V |+
∑|V |
s=1

∑
di∈D N(ws, di)P(cj |di)

, (2)

where N(wt, di) is the number of times word wt occurs
in document di, P(cj|di) is an indicator of whether doc-
ument di belongs in class cj, and |V | is the number of
words in the vocabulary. Similarly, the class frequen-
cies P(cj) are smoothed document frequencies estimated
from the data.

When a combination of labeled and unlabeled data is
available, past work has shown that naive Bayes param-
eter estimates can be improved by using EM to combine
evidence from all the data [Nigam et al., 1999]. In our
bootstrapping approach, an initial naive Bayes model
is estimated from the preliminarily-labeled data. Then
EM iterates until convergence (1) labeling all the data
(Equation 1) and (2) rebuilding a model with all the data
(Equation 2). The preliminary labels serve to provide a
good starting point; EM then incorporates the unlabeled
data and re-estimates the preliminary labels.

When the classes are organized hierarchically, as is our
case, naive Bayes parameter estimates can be improved
with the statistical technique shrinkage [McCallum et
al., 1998]. New word frequency parameter estimates for
a class are calculated by a weighted average between the
class’s local estimates, and estimates of its ancestors in
the hierarchy (each formed by pooling data from all the
ancestor’s children). The technique balances a trade-
off between the specificity of the unreliable local word
frequency estimates and the reliability of the more gen-
eral ancestor’s frequency estimates. The optimal mix-
ture weights for the weighted average are calculated by
EM concurrently with the class labels.

3.2 Experimental Results
Now we describe results of classifying computer science
research papers into our 70-leaf hierarchy. A test set
was created by hand-labeling a random sample of 625
research papers from the 30,682 papers formerly com-
prising the entire Cora archive. Of these, 225 did not fit

into any category, and were discarded. In these experi-
ments, we used the title, author, institution, references,
and abstracts of papers for classification, not the full
text.

Traditional naive Bayes with 400 labeled training doc-
uments, tested in a leave-one-out fashion, results in 47%
classification accuracy. However, less than 100 docu-
ments could have been hand-labeled in the 90 minutes
it took to create the keyword-lists; using this smaller
training set results in only 30% accuracy. The rule-
list classifier based on the keywords alone provides 45%.
We now turn to our bootstrap approach. When these
noisy keyword-labels are used to train a traditional naive
Bayes text classifier, 47% accuracy is reached on the test
set. The full algorithm, including EM and hierarchi-
cal shrinkage, achieves 66% accuracy. As an interesting
comparison, human agreement between two people on
the test set was 72%.

These results demonstrate the utility of the bootstrap-
ping approach. Keyword matching alone is noisy, but
when naive Bayes, EM and hierarchical shrinkage are
used together as a regularizer, the resulting classification
accuracy is close to human agreement levels. Automat-
ically creating preliminary labels, either from keywords
or other sources, avoids the significant human effort of
hand-labeling training data.

In future work we plan to refine our probabilistic
model to allow for documents to be placed in interior hi-
erarchy nodes, documents to have multiple class assign-
ments, and multiple mixture components per class. We
are also investigating principled methods of re-weighting
the word features for “semi-supervised” clustering that
will provide better discriminative training with unla-
beled data.

4 Information Extraction

Information extraction is concerned with identifying
phrases of interest in textual data. In the case of a
search engine over research papers, the automatic ex-
traction of informative text segments can be used to (1)
allow searches over specific fields, (2) provide useful ef-
fective presentation of search results (e.g. showing title
in bold), and (3) match references to papers. We have
investigated techniques for extracting the fields relevant
to research papers, such as title, author, and journal,
from both the headers and reference sections of papers.

Our information extraction approach is based on hid-
den Markov models (HMMs) and their accompanying
search techniques that are widely used for speech recog-
nition and part-of-speech tagging [Rabiner, 1989]. Dis-
crete output, first-order HMMs are composed of a set of
states Q, which emit symbols from a discrete vocabulary
Σ, and a set of transitions between states (q → q′). A
common goal of learning problems that use HMMs is to
recover the state sequence V (x|M) that has the high-
est probability of having produced some observation se-
quence x = x1x2 . . . xl ∈ Σ∗:

volume

editor

institution

title

journal

booktitle

tech

date

institution

author

0.85

0.03

0.86

0.14

0.80

0.20

0.80

0.20

0.11

0.89

1.0

0.33

0.660.03

0.03

0.03

0.03 0.91

0.09

0.18

0.37
0.82

Figure 3: Illustrative example of an HMM for reference
extraction.

V (x|M)= arg max
q1...ql∈Ql

l∏
k=1

P(qk−1→ qk)P(qk ↑ xk), (3)

where M is the model, P(qk−1→ qk) is the probability of
transitioning between states qk−1 and qk, and P(qk ↑ xk)
is the probability of state qk emitting output symbol
xk. The Viterbi algorithm [Viterbi, 1967] can be used to
efficiently recover this state sequence.

HMMs may be used for extracting information from
research papers by formulating a model in the following
way: each state is associated with a class that we want
to extract, such as title, author, or affiliation. Each state
emits words from a class-specific unigram distribution.
In order to label new text with classes, we treat the words
from the new text as observations and recover the most-
likely state sequence. The state that produces each word
is the class tag for that word. An illustrative example of
an HMM for reference extraction is shown in Figure 3.

Our work with HMMs for information extraction fo-
cuses on learning the appropriate model structure (the
number of states and transitions) automatically from
data. Other systems using HMMs for information ex-
traction include that by Leek [1997], which extracts in-
formation about gene names and locations from scientific
abstracts, and the Nymble system [Bikel et al., 1997] for
named-entity extraction. These systems do not consider
automatically determining model structure from data;
they either use one state per class, or use hand-built
models assembled by inspecting training examples.

4.1 Experiments
The goal of our information extraction experiments is
to investigate whether a model with multiple states per
class, either manually or automatically derived, outper-
forms a model with only one state per class for header
extraction. We define the header of a research paper
to be all of the words from the beginning of the paper

up to either the first section of the paper, usually the
introduction, or to the end of the first page, whichever
occurs first. A single token, either +INTRO+ or +PAGE+,
is added to the end of each header to indicate the case
with which it terminated. Likewise, the abstract is auto-
matically located and substituted with the single token
+ABSTRACT+. A few special classes of words are identi-
fied using simple regular expressions and converted to
tokens such as +EMAIL+. All punctuation, case and new-
line information is removed from the text. The target
classes we wish to identify include the following fifteen
categories: title, author, affiliation, address, note, email,
date, abstract, introduction, phone, keywords, web, de-
gree, publication number, and page.

Manually tagged headers are split into a 500-header,
23,557 word token labeled training set and a 435-header,
20,308 word token test set. Unigram language models
are built for each class and smoothed using a modified
form of absolute discounting. Each state uses its class
unigram distribution as its emission distribution.

We compare the performance of a model with one state
per class (Baseline) to that of models with multiple states
per class (M-merged, V-merged). The multi-state models
are derived from training data in the following way: a
maximally-specific HMM is built where each word token
in the training set is assigned a single state that only
transitions to the state that follows it. Each state is as-
sociated with the class label of its word token. Then,
the HMM is put through a series of state merges in or-
der to generalize the model. First, “neighbor merging”
combines all states that share a unique transition and
have the same class label. For example, all adjacent title
states are merged into one title state. As two states are
merged, transition counts are preserved, introducing a
self-loop on the new merged state. The neighbor-merged
model is used as the starting point for the two multi-state
models. Manual merge decisions are made in an itera-
tive manner to produce the M-merged model, and an au-
tomatic forward and backward V-merging procedure is
used to produce the V-merged model. V-merging consists
of merging any two states that share transitions from or
to a common state and have the same label. Transition
probabilities for the three models are set to their max-
imum likelihood estimates; the baseline model takes its
transition counts directly from the labeled training data,
whereas the multi-state models use the counts that have
been preserved during the state merging process.

Model performance is measured by word classification
accuracy, which is the percentage of header words that
are emitted by a state with the same label as the words’
true label. Extraction results are presented in Table 1.
Hidden Markov models do well at extracting header in-
formation; the best performance of 91.1% is obtained
with the M-merged model. Both of the multi-state mod-
els outperform the Baseline model, indicating that the
richer representation available through models derived
from data is beneficial. However, the automatically-
derived V-merged model does not perform as well as the
manually-derived M-merged model. The V-merged model

Number of Number of
Model states transitions Accuracy
Baseline 17 149 89.8
M-merged 36 164 91.1
V-merged 155 402 90.2

Table 1: Extraction accuracy (%) for the Baseline, M-
merged and V-merged models.

is limited in the state merges it can perform, whereas the
M-merged model is unrestricted. We expect that more
sophisticated state merging techniques, as discussed in
[Seymore et al., 1999], will result in superior-performing
models for information extraction.

5 Related Work
Several related research projects are investigating the au-
tomatic construction of special-purpose web sites. The
New Zealand Digital Library project [Witten et al.,
1998] has created publicly-available search engines for
domains from computer science technical reports to song
melodies using manually identified web sources. The
CiteSeer project [Bollacker et al., 1998] has also devel-
oped a search engine for computer science research pa-
pers that provides similar functionality for matching ref-
erences and searching. The WebKB project [Craven et
al., 1998] uses machine learning techniques to extract
domain-specific information available on the Web into a
knowledge base. The WHIRL project [Cohen, 1998] is an
effort to integrate a variety of topic-specific sources into a
single domain-specific search engine using HTML-based
extraction patterns and fuzzy matching for information
retrieval searching.

6 Conclusions
The amount of information available on the Internet con-
tinues to grow exponentially. As this trend continues,
we argue that, not only will the public need powerful
tools to help them sort though this information, but the
creators of these tools will need intelligent techniques
to help them build and maintain these tools. This pa-
per has shown that machine learning techniques can sig-
nificantly aid the creation and maintenance of domain-
specific search engines. We have presented new research
in reinforcement learning, text classification and infor-
mation extraction towards this end. In future work, we
will apply machine learning to automate more aspects of
domain-specific search engines, such as creating a topic
hierarchy with clustering and automatically identifying
seminal papers with citation graph analysis. We will
also verify that the techniques in this paper generalize
by applying them to a new domain.

References
[Bikel et al., 1997] D. Bikel, S. Miller, R. Schwartz, and

R. Weischedel. Nymble: a high-performance learning
name-finder. In ANLP-97, 1997.

[Bollacker et al., 1998] K. Bollacker, S. Lawrence, and C. L.
Giles. CiteSeer: An autonomous web agent for automatic
retrieval and identification of interesting publications. In
Agents ’98, 1998.

[Boyan et al., 1996] Justin Boyan, Dayne Freitag, and
Thorsten Joachims. A machine learning architecture for
optimizing web search engines. In AAAI workshop on
Internet-Based Information Systems, 1996.

[Cohen, 1998] W. Cohen. A web-based information system
that reasons with structured collections of text. In Agents
’98, 1998.

[Craven et al., 1998] M. Craven, D. DiPasquo, D. Freitag,
A. McCallum, T. Mitchell, K. Nigam, and S. Slattery.
Learning to extract symbolic knowledge from the World
Wide Web. In AAAI-98, 1998.

[Dempster et al., 1977] A. P. Dempster, N. M. Laird, and
D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[Joachims et al., 1997] T. Joachims,
D. Freitag, and T. Mitchell. Webwatcher: A tour guide
for the World Wide Web. In IJCAI-97, 1997.

[Kaelbling et al., 1996] L. Kaelbling, M. Littman, and
A. Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4:237–285, 1996.

[Leek, 1997] T. Leek. Information extraction using hidden
Markov models. Master’s thesis, UCSD, 1997.

[McCallum et al., 1998] A. McCallum, R. Rosenfeld,
T. Mitchell, and A. Ng. Improving text clasification by
shrinkage in a hierarchy of classes. In ICML-98, 1998.

[McCallum et al., 1999] A. McCallum, K. Nigam, J. Rennie,
and K. Seymore. Building domain-specific search engines
with machine learning techniques. In AAAI Spring Sym-
posium on Intelligent Agents in Cyberspace, 1999.

[Menczer, 1997] F. Menczer. ARACHNID: Adaptive re-
trieval agents choosing heuristic neighborhoods for infor-
mation discovery. In ICML-97, 1997.

[Nigam et al., 1999] K. Nigam, A. McCallum, S. Thrun, and
T. Mitchell. Text classification from labeled and unlabeled
documents using EM. Machine Learning, 1999. To appear.

[Rabiner, 1989] L. R. Rabiner. A tutorial on hidden Markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[Rennie and McCallum, 1999] Jason Rennie and Andrew
McCallum. Using reinforcement learning to spider the Web
efficiently. In ICML-99, 1999.

[Seymore et al., 1999] K. Seymore, A. McCallum, and
R. Rosenfeld. Learning hidden Markov model structure
for information extraction. In AAAI Workshop on Ma-
chine Learning for Information Extraction, 1999.

[Viterbi, 1967] A. J. Viterbi. Error bounds for convolutional
codes and an asymtotically optimum decoding algorithm.
IEEE Transactions on Information Theory, IT-13:260–
269, 1967.

[Witten et al., 1998] I. Witten, C. Nevill-Manning, R. Mc-
Nab, and S. J. Cunnningham. A public digital library
based on full-text retrieval: Collections and experience.
Communications of the ACM, 41(4):71–75, 1998.

