
Automating the Construction of Internet Portals

with Machine Learning

Andrew Kachites McCallum (mccallum@justresearch.com)
Just Research and Carnegie Mellon University

Kamal Nigam (knigam@cs.cmu.edu)
Carnegie Mellon University

Jason Rennie (jrennie@ai.mit.edu)
Massachusetts Institute of Technology

Kristie Seymore (kseymore@ri.cmu.edu)
Carnegie Mellon University

Abstract. Internet portals are growing in popularity because they gather content
from the Web and organize it for easy access, retrieval and search. For example,
www.campsearch.com allows complex queries by age-group, size, location and cost
over summer camps. This functionality is not possible with general, Web-wide search
engines. Unfortunately these portals are difficult and time-consuming to maintain.
This paper proposes the use of machine learning techniques to greatly automate the
creation and maintenance of Internet portals. We describe new research in reinforce-
ment learning, information extraction and text classification that enables efficient
spidering, the identification of informative text segments, and the population of
topic hierarchies. Using these techniques, we have built a demonstration system: a
portal for computer science research papers. It already contains over 50,000 papers
and is publicly available at www.cora.justresearch.com. These techniques are widely
applicable to portal creation in other domains.

Keywords: spidering, reinforcement learning, information extraction, hidden Markov
models, text classification, naive Bayes, Expectation-Maximization, unlabeled data

1. Introduction

As the amount of information on the World Wide Web grows, it be-
comes increasingly difficult to find just what we want. While general-
purpose search engines, such as AltaVista and NorthernLight offer rel-
atively high coverage, they often provide only low precision, even for
detailed queries. When we know that we want information of a certain
type, or on a certain topic, an Internet portal can be a powerful tool.
A portal is an information gateway that often includes a search engine,
and additional organization and content. Portals are often, though not
always, concentrated on a particular topic. They usually offer powerful
methods for finding domain-specific information. For example:
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− Camp Search (www.campsearch.com) allows the user to search for
summer camps for children and adults. The user can query and
browse the system based on geographic location, cost, duration
and other requirements.

− LinuxStart (www.linuxstart.com) provides a clearinghouse for Linux
resources. It has a hierarchy of topics and a search engine over
Linux pages.

− Movie Review Query Engine (www.mrqe.com) allows the user to
search for reviews of movies. Type a movie title, and it provides
links to relevant reviews from newspapers, magazines, and individ-
uals from all over the world.

− Crafts Search (www.bella-decor.com) lets the user search web pages
about crafts. It also provides search capabilities over classified ads
and auctions of crafts, as well as a browseable topic hierarchy.

− Travel-Finder (www.travel-finder.com) allows the user to search
web pages about travel, with special facilities for searching by
activity, category and location.

Performing any of these searches with a traditional, general-purpose
search engine would be extremely tedious or impossible. For this rea-
son, portals are becoming increasingly popular. Unfortunately, how-
ever, building these portals is a labor-intensive process, typically re-
quiring significant and ongoing human effort.

This paper describes the automation of many aspects of creating
and maintaining portals by using machine learning techniques. These
techniques allow portals to be created quickly with minimal effort
and are suited for re-use across many domains. We present machine
learning methods for spidering in an efficient topic-directed manner,
extracting topic-relevant information, and building a browseable topic
hierarchy. These approaches are briefly described in the following three
paragraphs.

Every search engine or portal must begin with a collection of docu-
ments to index. A spider (or crawler) is an agent that traverses the Web,
looking for documents to add to the collection. When aiming to popu-
late a domain-specific collection, the spider need not explore the Web
indiscriminantly, but should explore in a directed fashion in order to
find domain-relevant documents efficiently. We set up the spidering task
in a reinforcement learning framework (Kaelbling, Littman, & Moore,
1996), which allows us to precisely and mathematically define optimal
behavior. This approach provides guidance for designing an intelligent
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spider that aims to select hyperlinks optimally. It also indicates how
the agent should learn from delayed reward. Our experimental results
show that a reinforcement learning spider is three times more efficient
in finding domain-relevant documents than a spider with a breadth-first
search strategy.

Extracting characteristic pieces of information from the documents
of a domain-specific collection allows the user to search over these fea-
tures in a way that general search engines cannot. Information extrac-
tion, the process of automatically finding certain categories of textual
substrings in a document, is well suited to this task. We approach
information extraction with a technique from statistical language mod-
eling and speech recognition, namely hidden Markov models (Rabiner,
1989). We learn model structure and parameters from a combination of
labeled and distantly labeled data. Our model extracts fifteen different
fields from spidered documents with 93% accuracy.

Search engines often provide a hierarchical organization of materials
into relevant topics; Yahoo is the prototypical example. Automatically
adding documents into a topic hierarchy can be framed as a text clas-
sification task. We present extensions to a probabilistic text classifier
known as naive Bayes (Lewis, 1998; McCallum & Nigam, 1998) that
succeed in this task without requiring large sets of labeled training data.
The extensions reduce the need for human effort in training the classi-
fier by using a few keywords per class, a class hierarchy and unlabeled
documents in a bootstrapping process to build a classifier. Use of the
resulting classifier places documents into a 70-leaf topic hierarchy with
66% accuracy—performance approaching human agreement levels.

The remainder of the paper is organized as follows. We describe
the design of an Internet portal built using these techniques in the
next section. The following three sections describe machine learning
research introduced above and present their experimental results. We
then discuss related work and present conclusions.

2. The Cora Search Engine

We have brought all the above-described machine learning techniques
together in a demonstration system: an Internet portal for computer
science research papers named Cora. The system is publicly available
at www.cora.justresearch.com. Not only does it provide keyword search
facilities over 50,000 collected papers, it also places these papers into
a computer science topic hierarchy, maps the citation links between
papers, and provides bibliographic information about each paper. Our
hope is that in addition to providing a platform for testing machine
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Figure 1. A screen shot of the Cora homepage. It has a search interface and a
hierarchy interface.

learning research, this search engine will become a valuable tool for
other computer scientists, and will complement similar efforts, such
as the Computing Research Repository (xxx.lanl.gov/archive/cs), by
providing functionality and coverage not available online elsewhere.

We provide three ways for a user to access papers in the repository.
The first is through a topic hierarchy, similar to that provided by Yahoo,
but customized specifically for computer science research. It is available
on the homepage of Cora, as shown in Figure 1. This hierarchy was
hand-constructed, and contains 70 leaves, varying in depth from one
to three. Using text classification techniques, each research paper is
automatically placed into a topic node. The topic hierarchy may be
traversed by following hyperlinks from the homepage. Each node in
the tree contains a list of the most-cited papers in that research topic.

All papers are indexed into a search engine available through a
standard search interface. It supports commonly-used searching syn-
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Figure 2. A screen shot of the query results page of the Cora search engine
(www.cora.justresearch.com). Extracted paper titles, authors and abstracts are
provided at this level.

tax for queries, including +, -, and phrase searching with "". It also
allows searches restricted to extracted fields, such as authors and titles.
Search result matches are ranked by the weighted log of term frequency,
summed over all query terms. Query response time is usually less than
a second. The results of search queries are presented as in Figure 2.

From both the topic hierarchy and the results of searching, links
are provided to individual paper “details” pages. Each of these pages
shows all the relevant information for a single paper, such as title and
authors, links to the actual postscript paper, and a citation map that
can be traversed either forwards or backwards. One example of this is
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Figure 3. A screen shot of a details page of the Cora search engine. At this level,
all extracted information about a paper is displayed, including the citation linking,
which are hyperlinks to other details pages.

shown in Figure 3. The citation map allows a user to find details on
cited papers, as well as papers that cite the detailed paper. The context
of each reference is also provided, giving a brief summary of how the
reference is used by the detailed paper. We also provide automatically
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constructed BibTeX entries, a mechanism for submitting new papers
and web sites for spidering, and general Cora information links.

The collection and organization of the research papers for Cora is
automated by drawing upon the machine learning techniques described
in this paper. The first step of building any portal is the collection of
relevant information from the Web. A spider crawls the Web, starting
from the home pages of computer science departments and laboratories
and looks for research papers. Using reinforcement learning, our spider
efficiently explores the Web, following links that are more likely to
lead to research papers, and collects all postscript documents it finds.1

The details of this spidering are described in Section 3. The postscript
documents are then converted into plain text. If the document can be
reliably determined to have the format of a research paper (e.g. by
having Abstract and Reference sections), it is added to Cora. Using
this system, we have found 50,000 computer science research papers,
and are continuing to spider for even more.

The beginning of each paper is passed through a learned information
extraction system that automatically finds the title, authors, affiliations
and other important header information. Additionally, the bibliography
section of each paper is located, individual references identified, and
each reference automatically broken down into the appropriate fields,
such as author, title, journal, and date. This information extraction
process is described in Section 4.

Using the extracted information, reference and paper matches are
made—grouping citations to the same paper together, and matching
citations to papers in Cora. Of course, many papers that are cited
do not appear in the repository. This matching procedure is similar
to one described by Bollacker, Lawrence, and Giles (Bollacker et al.,
1998), except that we use additional field-level constraints provided
by knowing, for example, the title and authors of each paper. Finally,
each paper is placed into the computer science hierarchy using a text
classification algorithm. This process is described in Section 5.

These steps complete the processing of the data necessary to build
Cora. The creation of other Internet portals also involves directed spi-
dering, information extraction, and classification. The machine learning
techniques described in the following sections are widely applicable to
the construction and maintenance of any Internet portal.

1 Nearly all computer science papers are in postscript format, though we are
adding more formats, such as PDF.

cora.tex; 21/12/1999; 11:07; p.7



8 McCallum, Nigam, Rennie and Seymore

3. Efficient Spidering

Spiders are agents that explore the hyperlink graph of the Web, often
for the purpose of finding documents with which to populate a portal.
Extensive spidering is the key to obtaining high coverage by the major
Web search engines, such as AltaVista, Excite and NorthernLight. Since
the goal of these general-purpose search engines is to provide search
capabilities over the Web as a whole, for the most part they simply aim
to find as many distinct web pages as possible. Such a goal lends itself
to strategies like breadth-first search. If, on the other hand, the task is
to populate a domain-specific portal, then an intelligent spider should
try to avoid hyperlinks that lead to off-topic areas, and concentrate on
links that lead to documents of interest.

In Cora, efficient spidering is a major concern. The majority of
the pages in computer science department web sites do not contain
links to research papers, but instead are about courses, homework,
schedules and admissions information. Avoiding whole branches and
neighborhoods of departmental web graphs can significantly improve
efficiency and increase the number of research papers found given a
finite amount of crawling time. We use reinforcement learning as the
setting for efficient spidering in order to provide a formal framework.

Several other systems have also studied spidering, but without a
framework defining optimal behavior. Arachnid (Menczer, 1997) main-
tains a collection of competitive, reproducing and mutating agents for
finding information on the Web. Cho, Garcia-Molina, and Page (Cho
et al., 1998) suggest a number of heuristic ordering metrics for choosing
which link to crawl next when searching for certain categories of web
pages. Chakrabarti, van der Berg, and Dom (Chakrabarti et al., 1999)
produced a crawler to locate documents that are textually similar to
a set of training documents. This spider only requires a handful of
relevant example pages, whereas we also require example Web graphs
where such relevant pages are likely to be found. However, with this
additional training data, our framework is able to explicitly capture
knowledge of future reward—the fact that many pages leading to ”goal”
pages may contain text that is drastically different from goal pages. Ad-
ditionally, there are other systems that use reinforcement learning for
non-spidering Web tasks. WebWatcher (Joachims, Freitag, & Mitchell,
1997) is a browsing assistant that uses a combination of supervised and
reinforcement learning to help a user find information by recommending
which hyperlinks to follow. Laser uses reinforcement learning to tune
the search parameters of a search engine (Boyan, Freitag, & Joachims,
1996).
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The spidering algorithm we present here is unique in that it rep-
resents and takes advantage of future reward—learning features that
predict an on-topic document several hyperlink hops away from the
current hyperlink. This is particularly important when reward is sparse,
in other words, on-topic documents are few and far between. Our ex-
perimental results bear this out. In a domain without sparse rewards,
our reinforcement learning spider that represents future reward per-
forms about the same as another reinforcement learning spider that
does not (both out-perform a breadth-first search spider by three-fold).
However, on another domain in which reward is more sparse, explicitly
representing future reward increases efficiency by a factor of two.

3.1. Reinforcement Learning

The term “reinforcement learning” refers to a framework for learning
optimal decision making from rewards or punishment (Kaelbling et al.,
1996). It differs from supervised learning in that the learner is never
told the correct action for a particular state, but is simply told how
good or bad the selected action was, expressed in the form of a scalar
“reward.” We now describe the framework, and define optimal behavior
in this context.

A task is defined by a set of states, s ∈ S, a set of actions, a ∈ A,
a state-action transition function (mapping state/action pairs to the
resulting state), T : S × A → S, and a reward function (mapping
state/action pairs to a scalar reward), R : S × A → <. At each time
step, the learner (also called the agent) selects an action, and then as
a result is given a reward and transitions to a new state. The goal of
reinforcement learning is to learn a policy, a mapping from states to
actions, π : S → A, that maximizes the sum of its reward over time. The
most common formulation of “reward over time” is a discounted sum of
rewards into an infinite future. We use the infinite-horizon discounted
model where reward over time is a geometrically discounted sum in
which the discount , 0 ≤ γ < 1, devalues rewards received in the future.
Accordingly, when following policy π, we can define the value of each
state to be:

V π(s) =
∞∑
t=0

γtrt, (1)

where rt is the reward received t time steps after starting in state s.
The optimal policy, written π?, is the one that maximizes the value,
V π(s), for all states s.

In order to learn the optimal policy, we learn its value function, V ?,
and its more specific correlate, called Q. Let Q?(s, a) be the value of

cora.tex; 21/12/1999; 11:07; p.9



10 McCallum, Nigam, Rennie and Seymore

selecting action a from state s, and thereafter following the optimal
policy. This is expressed as:

Q?(s, a) = R(s, a) + γV ?(T (s, a)). (2)

We can now define the optimal policy in terms of Q by selecting from
each state the action with the highest expected future reward: π?(s) =
arg maxaQ?(s, a). The seminal work by Bellman (Bellman, 1957) shows
that the optimal policy can be found straightforwardly by dynamic
programming.

3.2. Spidering as Reinforcement Learning

As an aid to understanding how reinforcement learning relates to spi-
dering, consider the common reinforcement learning task of a mouse
exploring a maze to find several pieces of cheese. The mouse can perform
actions for moving among the grid squares of the maze. The mouse
receives a reward for finding each piece of cheese. The state is both the
position of the mouse and the locations of the cheese pieces remaining
to be consumed (since the cheese can only be consumed and provide
reward once). Note that the mouse only receives immediate reward
for finding a maze square containing cheese, but that in order to act
optimally it must choose actions based on future rewards as well.

In the spidering task, the on-topic documents are immediate re-
wards, like the pieces of cheese. The actions are following a particular
hyperlink. The state does not include the current “position” of the
agent since a crawler can go next to any URL it has previously en-
countered. The state is the set of on-topic documents that remain to
be consumed, and the set of URLs that have been encountered.2 The
number of actions is large and dynamic, in that it depends on which
pages the spider has visited so far.

The most important features of topic-specific spidering that make
reinforcement learning an especially good framework for defining the
optimal solution are: (1) performance is measured in terms of reward
over time (because it is better to locate on-topic documents sooner,
given time limitations), and (2) the environment presents situations
with delayed reward, (in that on-topic documents may be several hy-
perlink traversals away from the current choice point, but the text on
the current page may offer indications of which hyperlinks will lead to
reward soonest).

2 It is as if the mouse can jump to any square, as long as it has already visited a
bordering square. Thus the state is not a single position, but the position and shape
of the boundary.
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3.3. Practical Approximations

The problem now is how to apply reinforcement learning to spidering
in such a way that it can be practically solved. Unfortunately, the state
space is huge: exponential in the number of on-topic documents on the
Web. The action space is also large: the number of unique hyperlinks
that the spider could possibly visit. Thus we need to make some simpli-
fying assumptions in order to make the problem tractable and to allow
the spider to generalize to hyperlinks it has not already followed.3

We begin by assuming that the states are not distinguished by which
on-topic documents have already been consumed—this means that the
state is represented only by the set of URLs encountered so far. We refer
to the set of URLs encountered so far as the “fringe.” Although this
assumption reduces the size of the state space drastically, the number
of possible fringes is still exponential in the number of pages the spider
could visit, so straightforward dynamic programming or Q-learning is
impractical.

We turn instead to a roll-out solution with a model, and a form of
reinforcement learning policy evaluation called TD-1 (Sutton, 1988).
We gather training data and build a model consisting of all the pages
and hyperlinks found by exhaustively spidering a few web sites.4 By
knowing the complete web graph of the training data, we can easily
define a near-optimal policy. We then execute that policy for a finite
number of steps from state/action pairs for some subset of the states;
these executions result in a sequence of immediate rewards. We then as-
sign to these state/action pairs the Q-value calculated as the discounted
sum of the reward sequence. Finally, a value function approximator
is trained using the chosen subset of state/action/Q-value triples as
training data. The spider that emerges from this training procedure
efficiently explores new web graphs by estimating the expected future
reward associated with new hyperlinks using this function approxima-
tor. In the next two sub-sections we describe the near-optimal policy
on known web graphs, and the value function approximation.

3.4. Near-Optimal Policy on Known Hyperlink Graphs

Given full knowledge of a hyperlink graph built by exhaustively spider-
ing a web site, it is straightforward to specify the near-optimal policy

3 Note, that by defining the exact solution in terms of the optimal policy, and
making our assumptions explicit, we better understand the approximations we
introduce, and how to select areas of future work that will improve performance
further.

4 This is the off-line version of our algorithm; the on-line version would be a form
of policy improvement using roll-outs, as in (Tesauro & Galperin, 1997).
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A B

Figure 4. A representation of spidering space where arrows are hyperlinks and nodes
are web documents. The hexagonal node represents an already-explored node; the
circular nodes are unexplored. Filled-in circles denote the presence of immediate
reward (target pages). When a spider is given the choice between an action that
provides immediate reward and one that provides future reward, the spider always
achieves the maximum discounted reward by choosing the immediate reward first.

for restricted values of the discount factor, γ. The policy much choose
from among all the hyperlinks it knows about so far, the “fringe.”
At each time step, the near-optimal policy selects from the fringe the
action that follows the hyperlink on the path to the closest immediate
reward. For example, in Figure 4, the policy would choose action A at
time 0 because it provides a reward at time 1, where choosing action
B would delay the first immediate reward until time 2.

This policy closely approximates the optimal policy in cases where
γ ≤ 0.5 and all non-zero immediate rewards have the same value—both
conditions that hold in our spidering scenario. Under these conditions,
the optimal action is the one that brings immediate reward as soon as
possible. Even an infinite stream of constant reward discounted by 0.5
at each step is only equal in value to a single immediate reward starting
one time step sooner. Thus, finding a single immediate reward at time
step 1 and none thereafter provides more discounted reward than any
continuous finite stream of immediate reward starting at time step 2.
Our policy, which follows the path leading to the closest immediate
reward, correctly distinguishes between these two scenarios and any
others where the first rewards are different number of steps away. The
policy may not make the optimal choice in cases where two or more ac-
tions provide the first immediate reward equidistantly from the fringe.
The heuristic policy arbitrarily selects one of these; in contrast, the
optimal policy would select the hyperlink leading to the most additional
reward, beyond just the first one.
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3.5. Value Function Approximation

Using the above policy, the training procedure can generate state/action/Q-
value triples. As in most reinforcement learning solutions to problems
with large state spaces, these triples then act as training data for su-
pervised training of an approximation to the value function, V (s), or a
Q function.

First we must choose the subset of the states from which we will
execute roll-outs and estimateQ-values. For the experiments in this pa-
per, we choose all fringes that contain exactly one hyperlink. Thus, for
each known hyperlink a, we estimate Q({a}, a) by roll-out to generate
training data.

Next we must specify the features of the training data used by
the value function approximator. We assume that the Q-value of a
state-action pair is a function of an unordered list of the words in the
neighborhood of the hyperlink; that is Q(s, a) = F (text(a)). Note this
assumption states that the Q-value is independent of the state, and
thus the fringe as well.

The text() function selects which textual features will be the inputs
to the regression function F . In the experiments presented in this paper,
we select two sets of words, 1) the anchor text and tokens from the URL
of the hyperlink and 2) the full text of the web page where the hyperlink
is located. This associates a significant portion of text with each hyper-
link and allows each hyperlink to be identified uniquely. Experiments
not presented in this paper show that using a more restricted set of
neighborhood text does not enhance spidering performance.

Now using these features we must define a regression function, F ,
that maps text to real-valued Q-values. We perform the mapping by
casting this regression problem as classification (Torgo & Gama, 1997).
We discretize the discounted sum of future reward values of our training
data into bins and treat each bin as a class. For each hyperlink, we
calculate the probabilistic class membership of each bin using naive
Bayes (which is described in section 5.2.1). Then the Q-value of a new,
unseen hyperlink is estimated by taking a weighted average of each
bins’ Q-value, using the probabilistic class memberships as weights.

3.6. Experimental Results

In August 1998 we completely mapped the documents and hyperlinks
of the web sites of computer science departments at Brown University,
Cornell University, University of Pittsburgh and University of Texas.
They include 53,012 documents and 592,216 hyperlinks. We perform
a series of four test/train splits, in which the data from three univer-
sities is used to train a spider that is then tested on the fourth. The
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Figure 5. The performance of different spidering strategies, averaged over four
test/train splits. The reinforcement learning spiders find target documents signifi-
cantly faster than traditional breadth-first search.

target pages (for which a reward of 1 is given) are computer science
research papers. They are identified with very high precision by a simple
hand-coded algorithm that locates abstracts and reference sections with
regular expressions. Each spidering run begins at the homepage of the
test department.

We present results of two different reinforcement learning spiders
and compare them to a breadth-first-search spider. Immediate uses
γ = 0, utilizing only immediate reward in its assignment of hyper-
link values. This spider employs a binary classifier that distinguishes
between links that do and do not point directly to a research paper.
Future uses γ = 0.5 and represents the Q-function that makes use of
future reward with a more finely-discriminating 3-bin classifier, where
the data are partitioned into bins equally based on the Q-value of the
training documents.

The three spiders are evaluated on each test/train split by spider-
ing the test university. Figure 5 plots the number of research papers
found over the course of all the pages visited, averaged over all four
universities.

At all times during its progress, both reinforcement learning spi-
ders have found more research papers than breadth-first search. One
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Figure 6. The performance of different spidering strategies during the initial stages
of each spidering run. Here, the Future spider performs best, because identifying
future rewards are crucial.

measure of performance is the number of hyperlinks followed before
75% of the research papers are found. Both reinforcement learners are
significantly more efficient, requiring exploration of less than 16% of the
hyperlinks; in comparison, Breadth-first requires 48%. This represents
a factor of three increase in spidering efficiency.

In the early stages of each spidering run, the task of identifying
future rewards is more crucial, because no immediate reward actions
are available. In these cases, we would expect the Future spider to
outperform the Immediate one. Figure 6 shows the average performance
of the spiders during the initial stages of each spidering run. Here, we
indeed see that a spider using future rewards does better than one using
only immediate rewards. On average the Immediate spider takes nearly
three times as long as Future to find the first 28 (5%) of the papers.

In Figure 5, after the first 50% of the papers are found, however,
the Immediate spider performs slightly better than the Future spider.
This is because the system has uncovered many links that will give
immediate reward if followed, and the Immediate spider recognizes them
more accurately. In future work we are investigating techniques for
improving classification to recognize these immediate rewards when
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the spider uses the larger number of bins required for regression with
future reward.

These results indicate that when modeling future reward is particu-
larly important, the Future spider gathers information more efficiently
than the Immediate spider. This case is particularly evident in spidering
tasks where immediate reward is very sparse. In other work (Rennie &
McCallum, 1999), we have run experiments on the task of finding web
pages listing corporate officers in a company web site. Usually there is
only a single page with this information in a company web site, and
thus this is a task with a single reward, a “goal of achievement.” In
this case, the Future spider retrieves target pages twice as efficiently as
the Immediate spider.

As the Internet continues to prosper, it will continually become more
and more difficult to gather a sizable portion of the Web. Our research
suggests that this is no longer important. The Web is so vast that even
if we could amass all of the available documents, current techniques
are such that we could not find the information that we are looking
for. Thus, the future is in building specialized Internet portals that
are domain specific. The spidering research presented here is the first
step in building such portals. Instead of requiring a search over the
entire Internet to find a large collection of relevant documents, our
reinforcement learning framework can find such documents in a very
efficient fashion, up to three times faster than breadth-first search.

4. Information Extraction

Information extraction is concerned with identifying phrases of inter-
est in textual data. For many applications, extracting items such as
names, places, events, dates, and prices is a powerful way to summarize
the information relevant to a user’s needs. In the case of a domain-
specific portal, the automatic identification of important information
can increase the accuracy and efficiency of a directed search.

In Cora we use hidden Markov models (HMMs) to extract the fields
relevant to computer science research papers, such as titles, authors,
affiliations and dates. One HMM extracts information from each pa-
per’s header (the words preceding the main body of the paper.) A
second HMM processes the individual references in each paper’s refer-
ence section. The extracted text segments are used (1) to allow searches
over specific fields, (2) to provide useful effective presentation of search
results (e.g. showing title in bold), and (3) to match references to papers
during citation grouping.
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Our research interest in HMMs for information extraction is particu-
larly focused on learning the appropriate state and transition structure
of the models from training data, and estimating model parameters
with labeled and unlabeled data. We show that models with structures
learned from data outperform models built with one state per extrac-
tion class. We also demonstrate that using distantly-labeled data, for
parameter estimation improves extraction accuracy, but that Baum-
Welch estimation of model parameters with unlabeled data degrades
performance.

4.1. Hidden Markov Models

Hidden Markov modeling is a powerful statistical machine learning
technique that is just beginning to gain use in information extraction
tasks (e.g. Leek, 1997; Bikel, Miller, Schwartz, & Weischedel, 1997;
Freitag & McCallum, 1999). HMMs offer the advantages of having
strong statistical foundations that are well-suited to natural language
domains and handling new data robustly. They are also computation-
ally efficient to develop and evaluate due to the existence of established
training algorithms. The disadvantages of using HMMs are the need for
an a priori notion of the model topology and, as with any statistical
technique, large amounts of training data.

Discrete output, first-order HMMs are composed of a set of states
Q, with specified initial and final states qI and qF , a set of transitions
between states (q → q′), and a discrete vocabulary of output symbols
Σ = {σ1, σ2, . . . , σM}. The model generates a string w = w1w2 . . .wl by
beginning in the initial state, transitioning to a new state, emitting an
output symbol, transitioning to another state, emitting another symbol,
and so on, until a transition is made into the final state. The parameters
of the model are the transition probabilities P(q → q′) that one state
follows another and the emission probabilities P(q ↑ σ) that a state
emits a particular output symbol. The probability of a string w being
emitted by an HMM M is computed as a sum over all possible paths
by:

P(w|M) =
∑

q1,...,ql∈Ql

l+1∏
k=1

P(qk−1 → qk)P(qk ↑ wk), (3)

where q0 and ql+1 are restricted to be qI and qF respectively, and wl+1 is
an end-of-string token. The Forward algorithm can be used to calculate
this probability efficiently (Rabiner, 1989).

The observable output of the system is the sequence of symbols
that the states emit, but the underlying state sequence itself is hidden.
One common goal of learning problems that use HMMs is to recover
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Figure 7. Example header HMM. Each state emits words from a class-specific
multinomial distribution.

the state sequence V (w|M) that has the highest probability of having
produced an observation sequence:

V (w|M) = argmax
q1...ql∈Ql

l+1∏
k=1

P(qk−1 → qk)P(qk ↑ wk). (4)

Fortunately, the Viterbi algorithm (Viterbi, 1967) efficiently recovers
this state sequence.

4.2. HMMs for Information Extraction

Hidden Markov models provide a natural framework for modeling the
production of the headers and references of research papers. We want
to label each word of a header or reference as belonging to a class such
as title, author, journal, or keyword. We do this by modeling the entire
header or reference (and all of the classes to extract) with one HMM.
This task varies from the more classic extraction task of identifying
a small set of target words from a large document containing mostly
uninformative text.

HMMs may be used for information extraction by formulating a
model in the following way: each state is associated with a class that
we want to extract, such as title, author or affiliation. Each state emits
words from a class-specific multinomial (unigram) distribution. We can
learn the class-specific multinomial distributions and the state transi-
tion probabilities from training data. In order to label a new header or
reference with classes, we treat the words from the header or reference
as observations and recover the most-likely state sequence with the
Viterbi algorithm. The state that produces each word is the class tag
for that word. An example HMM for headers, annotated with class
labels and transition probabilities, is shown in Figure 7.
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Hidden Markov models, while relatively new to information extrac-
tion, have enjoyed success in related natural language tasks. They have
been widely used for part-of-speech tagging (Kupiec, 1992), and have
more recently been applied to topic detection and tracking (Yamron,
Carp, Gillick, Lowe, & van Mulbregt, 1998) and dialog act modeling
(Stolcke, Shriberg, Bates, Coccaro, Jurafsky, Martin, Meteer, Ries, Tay-
lor, & Ess-Dykema, 1998). Other systems using HMMs for information
extraction include those by Leek (1997), who extracts gene names and
locations from scientific abstracts, and the Nymble system (Bikel et al.,
1997) for named-entity extraction. Unlike our work, these systems do
not consider automatically determining model structure from data;
they either use one state per class, or use hand-built models assembled
by inspecting training examples. Freitag and McCallum (1999) hand-
build multiple HMMs, one for each field to be extracted, and focus on
modeling the immediate prefix, suffix, and internal structure of each
field; in contrast, we focus on learning the structure of one HMM to
extract all the relevant fields, taking into account field sequence.

4.2.1. Learning model structure from data
In order to build an HMM for information extraction, we must first
decide how many states the model should contain, and what transitions
between states should be allowed. A reasonable initial model is to use
one state per class, and to allow transitions from any state to any
other state (a fully-connected model). However, this model may not be
optimal in all cases. When a specific hidden sequence structure is ex-
pected in the extraction domain, we may do better by building a model
with multiple states per class, with only a few transitions out of each
state. Such a model can make finer distinctions about the likelihood of
encountering a class at a particular location in the document, and can
model specific local emission distribution differences between states of
the same class.

An alternative to simply assigning one state per class is to learn
the model structure from training data. Training data labeled with
class information can be used to build a maximally-specific model. An
example of this model built from just four labeled examples is shown
in Figure 8. Each word in the training data is assigned its own state,
which transitions to the state of the word that follows it. Each state is
associated with the class label of its word token. A transition is placed
from the start state to the first state of each training instance, as well
as between the last state of each training instance and the end state.

This model can be used as the starting point for a variety of state
merging techniques. We propose two simple types of merges that can
be used to generalize the maximally-specific model. First, “neighbor-
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Figure 8. Example of a maximally specific HMM built from four training instances,
which is used as the starting point for state merging.

merging” combines all states that share a transition and have the same
class label. For example, in Figure 8, the three adjacent title states from
the first header would be merged into a single title state. As multiple
neighbor states with the same class label are merged into one, a self-
transition loop is introduced, whose probability represents the expected
state duration for that class.

Second, “V-merging” merges any two states that have the same label
and share transitions from or to a common state. V-merging reduces the
branching factor of the maximally-specific model. We apply V-merging
to models that have already undergone neighbor-merging. For example,
again in Figure 8, instead of selecting from among three transitions from
the start state into title states, the V-merged model would merge the
children title states into one, so that only one transition from the start
state to the title state would remain. The V-merged model can be used
for extraction directly, or more state merges can be made automatically
or by hand to generalize the model further.

4.2.2. Labeled, unlabeled, and distantly-labeled data
Once a model structure has been selected, the transition and emission
parameters need to be estimated from training data. While obtaining
unlabeled training data is generally not too difficult, acquiring labeled
training data is more problematic. Labeled data is expensive and te-
dious to produce, since manual effort is involved. It is also valuable,
since the counts of class transitions N (q → q′) and the counts of a
word occurring in a class N (q ↑ σ) can be used to derive maximum
likelihood estimates for the parameters of the HMM:

P̂(q → q′) =
N (q→ q′)∑
s∈QN (q→ s)

, (5)
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P̂(q ↑ σ) =
N (q ↑ σ)∑
ρ∈ΣN (q ↑ ρ)

. (6)

Smoothing of the distributions is often necessary to avoid probabilities
of zero for the transitions or emissions that do not occur in the training
data.

Unlabeled data, on the other hand, can be used with the Baum-
Welch training algorithm (Baum, 1972) to train model parameters.
The Baum-Welch algorithm is an iterative Expectation-Maximization
(EM) algorithm that, given an initial parameter configuration, adjusts
model parameters to locally maximize the likelihood of unlabeled data.
Baum-Welch training suffers from the fact that it finds local maxima,
and is thus sensitive to initial parameter settings.

A third source of valuable training data is what we refer to as
distantly-labeled data. Sometimes it is possible to find data that is
labeled for another purpose, but which can be partially applied to the
domain at hand. In these cases, it may be that only a portion of the la-
bels are relevant, but the corresponding data can still be added into the
model estimation process in a helpful way. For example, BibTeX files
are bibliography databases that contain labeled citation information.
Several of the labels that occur in citations, such as title and author,
also occur in the headers of papers, and this labeled data can be used
in training emission distributions for header extraction. However, other
BibTeX fields are not relevant to the header extraction task, and not
all of the header fields occur in the BibTeX data. In addition, the data
does not include any information about sequences of classes in headers
and therefore cannot be used for transition distribution estimation.

Class emission distributions can be trained directly using either the
labeled training data (L), a combination of the labeled and distantly-
labeled data (L+D), or a linear interpolation of the labeled and distantly-
labeled data (L*D). In the L+D case, the word counts of the labeled
and distantly-labeled data are added together before deriving the emis-
sion distributions. In the L*D case, separate emission distributions
are trained for the labeled and distantly-labeled data, and then the
two distributions are interpolated together using a mixture weight de-
rived from leave-one-out Expectation-Maximization of the labeled data.
These three cases are shown below:

P̂L(wi) =
f(NL(wi))∑V
i=1 NL(wi)

(7)

P̂L+D(wi) =
f(NL(wi) +ND(wi))∑V
i=1 NL(wi) +ND(wi)

) (8)
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P̂L∗D(wi) = λP̂L(wi) + (1− λ)P̂D(wi), (9)

where N (wi) is the count of word wi in the class, λ is the mixture
weight, and f() represents a smoothing function, used to avoid prob-
abilities of zero for the vocabulary words that are not observed for a
particular class.

4.3. Experimental Results

We focus our information extraction experiments on extracting relevant
information from the headers of computer science research papers,
though the techniques described here apply equally well to reference
extraction. We define the header of a research paper to be all of the
words from the beginning of the paper up to either the first section of
the paper, usually the introduction, or to the end of the first page,
whichever occurs first. The abstract is automatically located using
regular expression matching and changed to a single ‘abstract’ token.
Likewise, an ‘intro’ or ‘page’ token is added to the end of each header
to indicate whether a section or page break terminated the header.
A few special classes of words are identified using simple regular ex-
pressions and converted to special identifying tokens: email addresses,
web addresses, year numbers, zip codes, technical report numbers, and
all other numbers. All punctuation, case and newline information is
removed from the text.

The target classes we wish to identify include the following fif-
teen categories: title, author, affiliation, address, note, email, date,
abstract, introduction (intro), phone, keywords, URL, degree, publica-
tion number (pubnum), and page. The abstract, intro and page classes
are each represented by a state that outputs only the token of that
class. The degree class captures the language associated with Ph.D.
or Master’s theses, such as “submitted in partial fulfillment of...” and
“a thesis by...”. The note field commonly accounts for phrases from
acknowledgements, copyright notices, and citations.

One thousand headers were manually tagged with class labels. Sixty-
five of the headers were discarded due to poor formatting, and the rest
were split into a 500-header, 23,557 word token labeled training set
and a 435-header, 20,308 word token test set. Distantly-labeled training
data was acquired from 176 BibTeX files that were collected from the
Web. These files consist of 2.4 million words, which contribute to the
following nine header classes: address, affiliation, author, date, email,
keyword, note, title, and URL.

For each emission distribution training case (L, L+D, L*D), a fixed
vocabulary is derived from all of the words in the training data used.
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Table I. Extraction accuracy (%) for models with one state per
class when the transition parameters are estimated from la-
beled (L) data, a combination of labeled and distantly-labeled
(L+D) and an interpolation of labeled and distantly-labeled
(L*D) data. Using the interpolation of the two data sources
provides the best extraction performance.

Model # States # Transitions L L+D L*D

Full 17 255 62.8 57.4 64.5

Self 17 252 85.9 83.1 89.4

ML 17 149 90.5 89.4 92.4

Smooth 17 255 89.9 88.8 92.0

The labeled data results in a 4,914-word vocabulary, and the labeled
and distantly-labeled data together contain 92,426 distinct words. Ab-
solute discounting (Ney, Essen, & Kneser, 1994) is used as the smooth-
ing function. An unknown word token is added to the vocabularies to
model out-of-vocabulary words. Any words in the testing data that are
not in the vocabulary are mapped to this token. The probability of the
unknown word is estimated separately for each class, and is assigned a
portion of the discount mass proportional to the fraction of singleton
words observed only in the current class.

We build several HMM models, varying model structures and train-
ing conditions, and test the models by finding the Viterbi paths for
the test set headers. Performance is measured by word classification
accuracy, which is the percentage of header words that are emitted by
a state with the label of the words’ true label.

4.3.1. Model selection – One state per class
The first set of models each use one state per class. Emission distri-
butions are trained for each class on either the labeled data (L), the
combination of the labeled and distantly-labeled data (L+D), or the in-
terpolation of the labeled and distantly-labeled data (L*D). Extraction
accuracy results for these models are reported in Table I.

The Full model is a fully-connected model where all transitions are
assigned uniform probabilities. It relies only on the emission distri-
butions to choose the best path through the model, and achieves a
maximum accuracy of 64.5%. The Self model is similar, except that the
self-transition probability is set according to the maximum likelihood
estimate from the labeled data, with all other transitions set uniformly.
This model benefits from the additional information of the expected
number of words to be emitted by each state, and its accuracy jumps to
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Figure 9. Extraction accuracy for multi-state models as states are merged. The
dashed lines represent the baseline performances of the ML model, trained on all
500 headers and on the same 100 headers as the multi-state models.

89.4%. The ML model sets all transition parameters to their maximum
likelihood estimates, and achieves the best result of 92.4% among this
set of models. The Smooth model adds an additional smoothing count
of one to each transition, so that all transitions have non-zero prob-
abilities, but smoothing the transition probabilities does not improve
tagging accuracy. For all models, the combination of the labeled and
distantly-labeled data (L+D) negatively affects performance relative
to the labeled data results. However, the interpolation of the distantly-
labeled data with the labeled data (L*D) consistently provides several
percentage points improvement in accuracy over training on the labeled
data alone. We will refer back to the ML model results in the next
comparisons, as the best representative of the models with one state
per class.

4.3.2. Model selection – Deriving structure from data
The next set of models are learned from data; both the number of states
and the transitions between the states are derived by state merging
techniques. We first consider models built from a combination of auto-
mated and manual techniques. Starting from a neighbor-merged model
of 805 states built from 100 randomly selected labeled training headers,
states with the same class label are manually merged in an iterative
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Table II. Extraction accuracy (%) for models learned from data
compared to the best model that uses one state per class.
Transition probabilities are estimated in three different ways.

Model # States # Transitions L L+D L*D

ML 17 149 90.5 89.4 92.4

M-merged 36 164 91.3 90.5 92.9

V-merged 155 402 90.6 89.7 92.7

manner. The manual merges are performed by a domain expert, and
only 100 of the 500 headers are used in order to keep the manual state
selection process manageable. Transition counts are preserved through-
out the merges to estimate maximum likelihood transition probabilities.
Each state uses its smoothed class emission distribution estimated
from the interpolation of the labeled and distantly-labeled data (L*D).
Extraction performance, measured as the number of states decreases
during the merging, is plotted in Figure 9. The dashed lines on the
figure represent the baseline performances of the ML model, trained on
all 500 headers and on the same 100 headers as the multi-state models.
The models with multiple states per class outperform the ML model for
both training conditions, particularly when 30 to 40 states are present.
Note that when trained on the same amount of data, the multi-state
models outperform the ML model for any number of states greater
than one per class. The best performance of 92.9% is obtained by the
model containing 36 states. We refer to this model as the M-merged
model. This result shows that more complex model structure benefits
extraction performance of HMMs on the header task.

We compare this result to the performance of a 155-state V-merged
model created entirely automatically from all of the labeled training
data. A summary of the results of the ML model, the M-merged model,
and the V-merged model is presented in Table II. Once again, the
L*D results are superior to the L and L+D results. In addition, both
the M-merged and V-merged models outperform the ML model by a
statistically significant margin in the L*D case, as determined with
McNemar’s test (p < 0.005 each).

For comparison, a V-merged model trained only on the 100 headers
used to train the M-merged model achieves an accuracy of 91.8% in the
L*D case. The performance of the ML model trained on 100 headers, as
shown in Figure 9, is 91.9%. It is interesting to note that for a very small
amount of training data, the two models perform equivalently, but that
with more training data, the V-merged model performs significantly
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Table III. Individual class extraction accuracy (%) for the
ML, M-merged and V-merged models. Classes noted in bold
occur in distantly-labeled data.

ML M-merged V-merged

Tag L L*D L L*D L L*D

Abstract 100.0 100.0 98.4 98.7 99.7 99.7

Address 95.8 95.5 95.2 95.1 95.8 95.6

Affiliation 87.9 91.4 88.4 90.7 88.3 91.4

Author 95.8 97.7 95.1 97.2 95.5 97.8

Date 97.6 96.9 96.9 97.2 97.6 96.5

Degree 75.8 70.8 80.3 73.2 77.1 72.5

Email 89.2 89.0 87.5 86.9 89.2 89.2

Keyword 92.2 98.1 97.3 98.9 94.5 99.0

Note 84.9 85.1 88.1 89.0 85.1 86.2

Phone 93.7 93.1 89.7 87.4 93.1 92.0

Pubnum 65.0 65.0 61.3 60.6 65.0 65.0

Title 93.4 98.4 93.2 97.8 92.8 98.2

URL 80.6 83.3 41.7 41.7 63.9 66.7

Overall 90.5 92.4 91.3 92.9 90.6 92.7

better. This indicates that, while learning model structure can give
better performance, it requires more training data. This requirement is
expected because there are many more parameters to estimate in the
V-merged model, because it has multiple states per class.

Yet, the M-merged model, trained on this same amount of data,
attains a far superior accuracy of 92.9%.

Table III provides a closer look at the errors in each class for the
ML, M-merged and V-merged models when using emission distributions
trained on labeled (L) and interpolated (L*D) data. Classes for which
there is distantly-labeled training data are indicated in bold. For several
of the classes, such as title and author, there is a noticeable increase
in accuracy when the distantly-labeled data is included. The poorest
performing individual classes are the degree, publication number, and
URL classes. The URL class has a particularly low accuracy for the M-
merged model, when limited URL class examples in the 100 training
headers probably kept the URL state from having transitions to and
from as many states as necessary.
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Table IV. Extraction accuracy (%) and test set perplexity (PP) for
the ML and M-merged models after Baum-Welch training.

ML M-merged

Accuracy Perplexity Accuracy Perplexity

Initial (L*D) 92.4 471 92.9 482

λ = 0.5 90.1 374 89.4 361

λ varies 89.7 364 88.8 349

4.3.3. Incorporating Unlabeled Data
Next, we demonstrate that using unlabeled data for parameter esti-
mation does not help classification accuracy for this extraction task.
Baum-Welch training, the standard technique for estimating HMM
parameters from unlabeled data, produces new transition and emission
parameter values that locally maximize the likelihood of the unlabeled
data. Careful selection of the initial parameter values is thus essential
for finding a good local maximum.

Five thousand unlabeled headers, composed of 287,770 word tokens
are used as training data. Baum-Welch training is run on the ML and
M-merged models. Model parameters are initialized to the maximum
likelihood transition probabilities from the labeled data and the in-
terpolated (L*D) emission distributions. The models are tested under
three different conditions; the extraction results, as well as the model
perplexities on the test set, are shown in Table IV. Perplexity is a
measure of how well the HMMs model the data; a lower value indicates
a model that assigns a higher likelihood to the observations from the
test set.

The “initial” result is the performance of the models using the initial
parameter estimates. These results are the same as the L*D case in
Table II. After Baum-Welch training, the vocabulary words that do
not occur in the unlabeled data are given a probability of zero in the
newly-estimated emission distributions. Thus, the new distributions
need to be smoothed; we choose to do this by interpolating them with
the initial parameter estimates. Each state’s newly-estimated emission
distribution is linearly interpolated with its initial distribution using
a mixture weight of λ. For the “λ = 0.5” setting, both distributions
for each state use a weight of 0.5. Alternatively, the Viterbi paths of
the labeled training data can be computed for each model using the
“λ = 0.5” emission distributions. The words emitted by each state are
then used to estimate optimal mixture weights for the local and initial
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distributions using the EM algorithm. These mixture weights are used
in the “λ varies” case.

Baum-Welch training degrades classification performance for both
the ML and M-merged models. The lack of improvement in classifi-
cation accuracy can be partly explained by the fact that Baum-Welch
training maximizes the likelihood of the unlabeled data, not the classifi-
cation accuracy. However, Baum-Welch training does result in improved
predictive modeling of the header domain. This improvement is pointed
out through the decrease in test set perplexity. The perplexity of the
test set improves over the initial settings with Baum-Welch reestima-
tion, and improves even further with careful selection of the emission
distribution mixture weights. Merialdo (1994) finds a similar effect on
tagging accuracy when training part-of-speech taggers using Baum-
Welch training when starting from well-estimated initial parameter
estimates.

4.4. Discussion

Our experiments show that hidden Markov models do well at extract-
ing important information from the headers of research papers. We
achieve an accuracy of 92.9% over all classes of the headers, and class-
specific accuracies of 97.8% for titles and 97.2% for authors. We have
demonstrated that models that contain multiple states per class do
provide increased extraction accuracy over models that use only one
state per class. This improvement is due to more specific transition
context modeling that is possible with more states. We expect that
it is also beneficial to have localized emission distributions, which can
capture distribution variations that are dependent on the position of
the class in the header.

Distantly-labeled data has proven to be valuable in providing robust
parameter estimates. The interpolation of distantly-labeled data pro-
vides a consistent increase in extraction accuracy for headers. In cases
where little labeled training data is available, distantly-labeled data is
a helpful resource.

The high accuracy of our header extraction results allows Cora to
process and present search results effectively. The success of these ex-
traction techniques is not limited to this single application, however.
For example, applying these techniques to reference extraction achieves
an accuracy of 93.4%. These techniques are also applicable beyond the
domain of research papers. We have shown how distantly-labeled data
can improve extraction accuracy; this data is available in electronic
form for many other domains. For example, lists of names (with relative
frequencies) are provided by the U.S Census Bureau, street names and
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addresses can be found in online phone books, and discussion groups
and news sites provide focused, topic-specific collections of text. These
sources of data can be used to derive class-specific words and relative
frequencies, which can then be applied to HMM development for a vast
array of domain-specific portals.

5. Classification into a Topic Hierarchy

Topic hierarchies are an efficient way to organize, view and explore large
quantities of information that would otherwise be cumbersome. The
U.S. Patent database, Yahoo, MedLine and the Dewey Decimal system
are all examples of topic hierarchies that exist to make information
more manageable.

As Yahoo has shown, a topic hierarchy can be a useful, integral part
of a portal. Many search engines (e.g. Lycos, Excite, and HotBot) now
display hierarchies on their front page. This feature is equally or more
valuable for domain-specific Internet portals. We have created a 70-leaf
hierarchy of computer science topics for Cora, part of which is shown
in Figures 1 and 10.

A difficult and time-consuming part of creating a hierarchy is popu-
lating it with documents by placing them into the correct topic nodes.
Yahoo has hired large numbers of people to categorize web pages into
their hierarchy. The U.S. patent office also employs people to perform
the job of categorizing patents. In contrast, we automate the process
of placing documents into leaf nodes of the hierarchy with learned text
classifiers.

Traditional text classification algorithms learn representations from
a set of labeled data. Unfortunately, these algorithms typically require
on the order of hundreds of examples per class. Since labeled data
is tedious and expensive to obtain, and our class hierarchy is large,
using the traditional supervised approach is not feasible. In this section
we describe how to create a text classifier by bootstrapping without
any labeled documents, using only a few keywords per class and a
class hierarchy. Both of these information sources are easily obtained.
Keywords are quicker to generate than even a small number of la-
beled documents. Many classification problems naturally come with
hierarchically-organized classes.

Bootstrapping is a general framework for iteratively improving a
learner using unlabeled data. Bootstrapping is initialized with a small
amount of seed information that can take many forms. Each itera-
tion has two steps: (1) labels are estimated for unlabeled data from
the currently learned model, and (2) the unlabeled data and these
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Figure 10. A subset of Cora’s computer science hierarchy with the complete
keywords for each of several categories. These keywords are used to initialize
bootstrapping.

estimated labels are incorporated as training data into the learner.
Bootstrapping approaches have been used for information extraction
(Riloff & Jones, 1999), word sense disambiguation (Yarowsky, 1995),
and hypertext classification (Blum & Mitchell, 1998).

Our algorithm for text classification is initialized by using the key-
words to generate preliminary labels for some documents by term-
matching. The bootstrapping iterations are EM steps that use un-
labeled data and hierarchical shrinkage to estimate parameters of a
naive Bayes classifier. An outline of the entire algorithm is presented
in Table V. In experimental results, we show that the learned classifier
has accuracy that approaches human agreement levels for this domain.

5.1. Initializing Bootstrapping with Keywords

The initialization step in the bootstrapping process uses the keywords
to generate preliminary labels for as many of the unlabeled documents
as possible. For each class a few keywords are generated by a human
trainer. Figure 10 shows examples of the number and type of keywords
given in our experimental domain—the human-provided keywords are
shown in the nodes in non-italic font.

We generate preliminary labels from the keywords by term-matching
in a rule-list fashion: for each document, we step through the key-
words and place the document in the category of the first keyword
that matches. Since we provide only a few keywords for each class,
classification by keyword matching is both inaccurate and incomplete.
Keywords tend to provide high-precision and low-recall; this brittleness
will leave many documents unlabeled. Some documents will match
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Table V. An outline of the bootstrapping algorithm described in Sections 5.1
and 5.2.

• Inputs: A collection of unlabeled training documents, a class hierarchy, and
a few keywords for each class.

• Generate preliminary labels for as many of the unlabeled documents as possible
by term-matching with the keywords in a rule-list fashion.

• Initialize all the λj’s to be uniform along each path from a leaf class to the
root of the class hierarchy.

• Iterate the EM algorithm:

• (M-step) Build the maximum likelihood multinomial at each node in
the hierarchy given the class probability estimates for each document
(Equations 10 and 11). Normalize all the λj ’s along each path from a
leaf class to the root of the class hierarchy so that they sum to 1.

• (E-step) Calculate the expectation of the class labels of each document
using the classifier created in the M-step (Equation 12). Increment the
new λj’s by attributing each word of held-out data probabilistically to
the ancestors of each class.

• Output: A naive Bayes classifier that takes an unlabeled test document and
predicts a class label.

keywords from the wrong class. In general we expect the low recall
of the keywords to be the dominating factor in overall error. In our
experimental domain, for example, 59% of the unlabeled documents do
not contain any keywords.

5.2. The Bootstrapping Iterations

The goal of the bootstrapping iterations is to generate a naive Bayes
classifier from seed information and the inputs: the (inaccurate and
incomplete) preliminary labels, the unlabeled data and the class hi-
erarchy. Many bootstrapping algorithms assign labels to the unlabeled
data, and then choose just a few of these to incorporate into training at
each step. In our algorithm, we take a different approach. At each boot-
strapping step we assign probabilistic labels to all the unlabeled data,
and incorporate the entire set into training. Expectation-Maximization
is the bootstrapping process we use to iteratively estimate these prob-
abilistic labels and the parameters of the naive Bayes classifier. We
begin a detailed description of the bootstrapping iteration with a short
overview of supervised naive Bayes text classification, then proceed to
explain EM as a bootstrapping process, and conclude by presenting
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hierarchical shrinkage, an augmentation to basic EM estimation that
uses the class hierarchy.

5.2.1. The naive Bayes framework
We build on the framework of multinomial naive Bayes text classifica-
tion (Lewis, 1998; McCallum & Nigam, 1998). It is useful to think of
naive Bayes as estimating the parameters of a probabilistic generative
model for text documents. In this model, first the class of the document
is selected. The words of the document are then generated based on the
parameters of a class-specific multinomial (i.e. unigram model). Thus,
the classifier parameters consist of the class prior probabilities and the
class-conditioned word probabilities. Each class, cj, has a document
frequency relative to all other classes, written P(cj). For every word wt
in the vocabulary V , P(wt|cj) indicates the frequency that the classifier
expects word wt to occur in documents in class cj.

In the standard supervised setting, learning of the parameters is
accomplished using a set of labeled training documents, D. To estimate
the word probability parameters, P(wt|cj), we count the frequency with
which word wt occurs among all word occurrences for documents in
class cj. We supplement this with Laplace smoothing that primes each
estimate with a count of one to avoid probabilities of zero. Let N (wt, di)
be the count of the number of times word wt occurs in document di,
and define P(cj|di) ∈ {0, 1}, as given by the document’s class label.
Then, the estimate of the probability of word wt in class cj is:

P(wt|cj) =
1 +

∑
di∈DN (wt, di)P(cj|di)

|V |+
∑|V |

s=1

∑
di∈DN (ws, di)P(cj|di)

. (10)

The class prior probability parameters are set in the same way, where
|C| indicates the number of classes:

P(cj) =
1 +

∑
di∈D P(cj|di)
|C|+ |D| . (11)

Given an unlabeled document and a classifier, we determine the
probability that the document belongs in class cj using Bayes’ rule
and the naive Bayes assumption—that the words in a document occur
independently of each other given the class. If we denote wdi,k to be
the kth word in document di, then classification becomes:

P(cj|di) ∝ P(cj)P(di|cj)

∝ P(cj)
|di|∏
k=1

P(wdi,k |cj). (12)
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Empirically, when given a large number of training documents, naive
Bayes does a good job of classifying text documents (Lewis, 1998).
More complete presentations of naive Bayes for text classification are
provided by Mitchell (1997) and McCallum and Nigam (1998).

5.2.2. Parameter estimation from unlabeled data with EM
In a standard supervised setting, each document comes with a label.
In our bootstrapping scenario, the documents are unlabeled, except
for the preliminary labels from keyword matching that are incomplete
and not completely correct. In order to estimate the parameters of
a naive Bayes classifier using all the documents, we use EM to gen-
erate probabilistically-weighted class labels. This results in classifier
parameters that are more likely given all the data.

EM is a class of iterative algorithms for maximum likelihood or
maximum a posteriori parameter estimation in problems with incom-
plete data (Dempster, Laird, & Rubin, 1977). Given a model of data
generation, and data with some missing values, EM iteratively uses
the current model to estimate the missing values, and then uses the
missing value estimates to improve the model. Using all the available
data, EM will locally maximize the likelihood of the parameters and
give estimates for the missing values. In our scenario, the class labels
of the documents are the missing values.

In implementation, using EM for bootstrapping is an iterative two-
step process. Initially, the parameter estimates are set in the standard
naive Bayes way from just the preliminarily labeled documents. Then
we iterate the E- and M-steps. The E-step calculates probabilistically-
weighted class labels, P(cj|di), for every document using the classifier
and Equation 12. The M-step estimates new classifier parameters using
all the documents, by Equations 10 and 11, where P(cj|di) is now
continuous, as given by the E-step. We iterate the E- and M-steps until
the classifier converges. The initialization step from the preliminary
labels identifies a starting point for EM to find a good local maxima
for the classification task.

In previous work (Nigam, McCallum, Thrun, & Mitchell, 1999), we
have shown this technique significantly increases text classification ac-
curacy when given limited amounts of labeled data and large amounts
of unlabeled data. Here, we use the preliminary labels to provide the
starting point for EM. The EM iterations both correct the preliminary
labels and complete the labeling for the remaining documents.
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5.2.3. Improving sparse data estimates with shrinkage
Even when provided with a large pool of documents, naive Bayes pa-
rameter estimation during bootstrapping will suffer from sparse data
problems because there are has so many parameters to estimate (|V ||C|+
|C|). Fortunately we can further alleviate the sparse data problem
by leveraging the class hierarchy with a statistical technique called
shrinkage.

Consider trying to estimate the probability of the word “intelli-
gence” in the class NLP. This word should clearly have non-negligible
probability there; however, with limited training data we may be un-
lucky, and the observed frequency of “intelligence” in NLP may be very
far from its true expected value. One level up the hierarchy, however,
the Artificial Intelligence class contains many more documents (the union
of all the children). There, the probability of the word “intelligence”
can be more reliably estimated.

Shrinkage calculates new word probability estimates for each leaf
class by a weighted average of the estimates on the path from the
leaf to the root. The technique balances a trade-off between specificity
and reliability. Estimates in the leaf are most specific but unreliable;
further up the hierarchy estimates are more reliable but unspecific. We
can calculate mixture weights for the averaging that are guaranteed to
maximize the likelihood of held-out data with the EM algorithm during
bootstrapping.

One can think of hierarchical shrinkage as a generative model that is
slightly augmented from the one described in Section 5.2.1. As before,
a class (leaf) is selected first. Then, for each word position in the doc-
ument, an ancestor of the class (including itself) is selected according
to the shrinkage weights. Then, the word itself is chosen based on the
multinomial word distribution of that ancestor. If each word in the
training data were labeled with which ancestor was responsible for
generating it, then estimating the mixture weights would be a simple
matter of maximum likelihood estimation from the ancestor emission
counts. But these ancestor labels are not provided in the training data,
and hence we use EM to fill in these missing values. During EM, we
estimate these vertical mixture weights concurrently with the class
word probabilities.

More formally, let {P1(wt|cj), . . . ,Pk(wt|cj)} be word probability
estimates, where P1(wt|cj) is the maximum likelihood estimate using
training data just in the leaf, P2(wt|cj) is the maximum likelihood
estimate in the parent using the training data from the union of the
parent’s children, Pk−1(wt|cj) is the estimate at the root using all
the training data, and Pk(wt|cj) is the uniform estimate (Pk(wt|cj) =
1/|V |). The interpolation weights among cj’s “ancestors” (which we de-
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fine to include cj itself) are written {λ1
j , λ

2
j, . . . , λ

k
j}, where

∑k
a=1 λ

a
j =

1. The new word probability estimate based on shrinkage, denoted
P̌(wt|cj), is then

P̌(wt|cj) = λ1
jP

1(wt|cj) + . . .+ λkjP
k(wt|cj). (13)

The λj vectors are calculated by the iterations of EM. In the E-step
we calculate for each class cj and each word of unlabeled held-out data
H, the probability that the word was generated by the ith ancestor. In
the M-step, we normalize the sum of these expectations to obtain new
mixture weights λj. Without the use of held-out data, all the mixture
weights would concentrate in the leaves.

Specifically, we begin by initializing the λ mixture weights along
each path from a leaf to a uniform distribution. Let βaj (wdi,k) denote
the probability that the ath ancestor of cj was used to generate word
occurrence wdi,k . The E-step consists of estimating the β’s:

βaj (wdi,k) =
λajP

a(wdi,k |cj)∑
m λ

m
j Pm(wdi,k |cj)

. (14)

In the M-step, we derive new and guaranteed improved weights, λ,
by summing and normalizing the β’s:

λaj =

∑
wdi,k∈H

βaj (wdi,k)P(cj|di)∑
b

∑
wdi,k∈H

βbj(wdi,k)P(cj|di)
. (15)

The E- and M-steps iterate until the λ’s converge. These weights are
then used to calculate new shrinkage-based word probability estimates,
as in Equation 13. Classification of new test documents is performed
just as before (Equation 12), where the Laplace estimates of the word
probability estimates are replaced by shrinkage-based estimates.

A more complete description of hierarchical shrinkage for text classi-
fication is presented by McCallum, Rosenfeld, Mitchell, and Ng (1998).

5.3. Experimental Results

In this section, we provide empirical evidence that bootstrapping a
text classifier from unlabeled data can produce a high-accuracy text
classifier. As a test domain, we use computer science research papers.
We have created a 70-leaf hierarchy of computer science topics, part
of which is shown in Figure 10. Creating the hierarchy took about
60 minutes, during which we examined conference proceedings, and
explored computer science sites on the Web. Selecting a few keywords
associated with each node took about 90 minutes. A test set was created
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Table VI. Classification results with different techniques: keyword matching,
naive Bayes, Bootstrapping and Human agreement. The classification accuracy,
and the number of labeled, keyword-matched preliminarily-labeled (P-Labeled),
and unlabeled documents used by each variant are shown.

Method # Labeled # P-Labeled # Unlabeled Accuracy

Keyword Matching — — — 45%

Naive Bayes 100 — — 30%

Naive Bayes 399 — — 47%

Naive Bayes — 12,657 — 47%

Bootstrapping — 12,657 — 63%

Bootstrapping — 12,657 18,025 66%

Human Agreement — — — 72%

by expert hand-labeling of a random sample of 625 research papers from
the 30,682 papers in the Cora archive at the time we began these exper-
iments. Of these, 225 (about one-third) did not fit into any category,
and were discarded—resulting in a 400 document test set. Labeling
these documents took about six hours. Some of the discarded papers
were outside the area of computer science (e.g. astrophysics papers),
but most of these were papers that with a more complete hierarchy
would be considered computer science papers. The class frequencies of
the data are not drastically skewed; on the test set, the most populous
class accounted for only 7% of the documents.

Each research paper is represented as the words of the title, author,
institution, references, and abstract. A detailed description of how these
segments are automatically extracted is provided in Section 4. Words
occurring in fewer than five documents and words on a standard stoplist
were discarded. No stemming was used. Bootstrapping was performed
using the algorithm outlined in Table V.

Table VI shows results with different classification techniques used.
The rule-list classifier based on the keywords alone provides 45% accu-
racy.5 As an interesting time comparison, about 100 documents could
have been labeled in the time it took to generate the keyword lists.
Naive Bayes accuracy with 100 labeled documents is only 30%. It takes
about four times as much labeled training data to provide comparable
accuracy to simple keyword matching; with 399 labeled documents
(using our test set in a leave-one-out-fashion), naive Bayes reaches 47%.

5 The 43% of documents in the test set containing no keywords are not assigned
a class by the rule-list classifier, and are counted as incorrect.

cora.tex; 21/12/1999; 11:07; p.36



Internet Portals with Machine Learning 37

This result alone shows that hand-labeling sets of data for supervised
learning can be expensive in comparison to alternate techniques.

When running the bootstrapping algorithm, 12,657 documents are
given preliminary labels by keyword matching. EM and shrinkage in-
corporate the remaining 18,025 documents, “fix” the preliminary labels
and leverage the hierarchy; the resulting accuracy is 66%. As an in-
teresting comparison, agreement on the test set between two human
experts was 72%. These results show that our bootstrapping algo-
rithm can generate competitive classifications without the use of large
hand-labeled sets of data.

A few further experiments reveal some of the inner-workings of
bootstrapping. If we build a naive Bayes classifier in the standard
supervised way from the 12,657 preliminarily labeled documents the
classifier gets 47% accuracy. This corresponds to the performance for
the first iteration of bootstrapping. Note that this matches the accuracy
of traditional naive Bayes with 399 labeled training documents, but
that it requires less than a quarter the human labeling effort. If we run
bootstrapping without the 18,025 documents left unlabeled by keyword
matching, accuracy reaches 63%. This indicates that shrinkage and EM
on the preliminarily labeled documents is providing substantially more
benefit than the remaining unlabeled documents.

5.4. Discussion

One explanation for the small impact of the 18,025 documents left
unlabeled by keyword matching is that many of these do not fall natu-
rally into the hierarchy. Remember that about one-third of the 30,000
documents fall outside the hierarchy. Most of these will not be given
preliminary labels by keyword matching. The presence of these outlier
documents skews EM parameter estimation. A more inclusive com-
puter science hierarchy would allow the unlabeled documents to benefit
classification more.

However, even without a complete hierarchy, we could use these
documents if we could identify these outliers. Some techniques for
robust estimation with EM are discussed by McLachlan and Basford
(McLachlan & Basford, 1988). One specific technique for these text
hierarchies is to add extra leaf nodes containing uniform word dis-
tributions to each interior node of the hierarchy in order to capture
documents not belonging in any of the predefined topic leaves. This
should allow EM to perform well even when a large percentage of the
documents do not fall into the given classification hierarchy. A similar
approach is also planned for research in topic detection and tracking
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(TDT) (Baker, Hofmann, McCallum, & Yang, 1999). Experimentation
with these techniques is an area of ongoing research.

In other future work we will investigate different ways of initializing
bootstrapping, with keywords and otherwise. We plan to refine our
probabilistic model to allow for documents to be placed in interior
hierarchy nodes, documents to have multiple class assignments, and
classes to be modeled with multiple mixture components. We are also
investigating principled methods of re-weighting the word features for
“semi-supervised” clustering that will provide better discriminative
training with unlabeled data.

Here, we have shown the application of our bootstrapping process to
populating a hierarchy for Cora, a portal for computer science research
papers. Topic hierarchies are often an integral part of most portals,
although they are typically hand-built and maintained. The techniques
demonstrated here are generally applicable to any topic hierarchy, and
should become a powerful tool for populating topic hierarchies with a
minimum of human effort.

6. Related Work

Several related research projects investigate the gathering and organi-
zation of specialized information on the Internet. The WebKB project
(Craven, DiPasquo, Freitag, McCallum, Mitchell, Nigam, & Slattery,
1998) focuses on the collection and organization of information from
the Web into knowledge bases. This project also has a strong emphasis
on using machine learning techniques, including text classification and
information extraction, to promote easy re-use across domains. Two
example domains, computer science departments and companies, have
been developed.

The CiteSeer project (Bollacker et al., 1998) has also developed a
search engine for computer science research papers. It provides similar
functionality for searching and linking of research papers, but does not
currently provide a topic hierarchy of the field. CiteSeer focuses on
the domain of research papers, and has particularly strong features for
autonomous citation indexing and the viewing of the textual context
in which a citation was made. The project does not aim to automate
with machine learning the construction of Internet portals on arbitrary
domains.

The New Zealand Digital Library project (Witten, Nevill-Manning,
McNab, & Cunnningham, 1998) has created publicly-available search
engines for domains from computer science technical reports to song
melodies. The emphasis of this project is on the creation of full-text
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searchable digital libraries, and not on machine learning techniques
that can be used to autonomously generate such repositories. The
web sources for their libraries are manually identified. No high-level
organization of the information is given. No information extraction
is performed and, for the paper repositories, no citation linking is
provided.

The WHIRL project (Cohen, 1998) is an effort to integrate a variety
of topic-specific sources into a single domain-specific search engine. Two
demonstration domains of computer games and North American birds
integrate information from many sources. The emphasis is on provid-
ing soft matching for information retrieval searching. Information is
extracted from web pages by hand-written extraction patterns that are
customized for each web source. Recent WHIRL research (Cohen &
Fan, 1999) learns general wrapper extractors from examples.

7. Conclusions and Future Work

The amount of information available on the Internet continues to grow
exponentially. As this trend continues, we argue that not only will the
public need powerful tools to help them sort through this informa-
tion, but the creators of these tools will need intelligent techniques to
help them build and maintain these services. This paper has shown
that machine learning techniques can significantly aid the creation and
maintenance of portals and domain-specific search engines. We have
presented new research in reinforcement learning, text classification
and information extraction towards this end.

In addition to the future work discussed earlier, we also see many
other areas where machine learning can further automate the construc-
tion and maintenance of domain-specific search engines. For example,
text classification can decide which documents on the Web are relevant
to the domain. Unsupervised clustering can automatically create a topic
hierarchy and generate keywords. Citation graph analysis can identify
seminal papers. We anticipate developing a suite of many machine
learning techniques so that the creation of portals can be accomplished
quickly and easily.
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