
Efficient Clustering of
High-Dimensional Data Sets

with Application to Reference Matching

Andrew McCallum‡†
‡WhizBang! Labs - Research

4616 Henry Street
Pittsburgh, PA USA

mccallum@cs.cmu.edu

Kamal Nigam†
†School of Computer Science
Carnegie Mellon University

Pittsburgh, PA USA

knigam@cs.cmu.edu

Lyle H. Ungar∗
∗Computer and Info. Science

University of Pennsylvania
Philadelphia, PA USA

ungar@cis.upenn.edu

ABSTRACT
Many important problems involve clustering large datasets.
Although naive implementations of clustering are computa-
tionally expensive, there are established efficient techniques
for clustering when the dataset has either (1) a limited num-
ber of clusters, (2) a low feature dimensionality, or (3) a
small number of data points. However, there has been much
less work on methods of efficiently clustering datasets that
are large in all three ways at once—for example, having
millions of data points that exist in many thousands of di-
mensions representing many thousands of clusters.

We present a new technique for clustering these large, high-
dimensional datasets. The key idea involves using a cheap,
approximate distance measure to efficiently divide the data
into overlapping subsets we call canopies. Then cluster-
ing is performed by measuring exact distances only between
points that occur in a common canopy. Using canopies, large
clustering problems that were formerly impossible become
practical. Under reasonable assumptions about the cheap
distance metric, this reduction in computational cost comes
without any loss in clustering accuracy. Canopies can be
applied to many domains and used with a variety of cluster-
ing approaches, including Greedy Agglomerative Clustering,
K-means and Expectation-Maximization. We present ex-
perimental results on grouping bibliographic citations from
the reference sections of research papers. Here the canopy
approach reduces computation time over a traditional clus-
tering approach by more than an order of magnitude and
decreases error in comparison to a previously used algorithm
by 25%.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—
Clustering

1. INTRODUCTION
Unsupervised clustering techniques have been applied to
many important problems. By clustering patient records,
health care trends are discovered. By clustering address
lists, duplicate entries are eliminated. By clustering astro-
nomical data, new classes of stars are identified. By cluster-
ing documents, hierarchical organizations of information are
derived. To address these applications, and many others, a
variety of clustering algorithms have been developed.

However, traditional clustering algorithms become compu-
tationally expensive when the data set to be clustered is
large. There are three different ways in which the data set
can be large: (1) there can be a large number of elements in
the data set, (2) each element can have many features, and
(3) there can be many clusters to discover. Recent advances
in clustering algorithms have addressed these efficiency is-
sues, but only partially. For example, KD-trees [15] provide
for efficient EM-style clustering of many elements, but re-
quire that the dimensionality of each element be small. An-
other algorithm [3] efficiently performs K-means clustering
by finding good initial starting points, but is not efficient
when the number of clusters is large. There has been al-
most no work on algorithms that work efficiently when the
data set is large in all three senses at once—when there are
millions of elements, many thousands of features, and many
thousands of clusters.

This paper introduces a technique for clustering that is effi-
cient when the problem is large in all of these three ways at
once. The key idea is to perform clustering in two stages,
first a rough and quick stage that divides the data into over-
lapping subsets we call “canopies,” then a more rigorous
final stage in which expensive distance measurements are
only made among points that occur in a common canopy.
This differs from previous clustering methods in that it uses
two different distance metrics for the two stages, and forms
overlapping regions.

The first stage can make use of extremely inexpensive meth-
ods for finding data elements near the center of a region.
Many proximity measurement methods, such as the inverted
index commonly used in information retrieval systems, are
very efficient in high dimensions and can find elements near
the query by examining only a small fraction of a data set.

Variants of the inverted index can also work for real-valued
data.

Once the canopies are built using the approximate distance
measure, the second stage completes the clustering by run-
ning a standard clustering algorithm using a rigorous, and
thus more expensive distance metric. However, significant
computation is saved by eliminating all of the distance com-
parisons among points that do not fall within a common
canopy. Unlike hard-partitioning schemes such as “block-
ing” [13] and KD-trees, the overall algorithm is tolerant to
inaccuracies in the approximate distance measure used to
create the canopies because the canopies may overlap with
each other.

From a theoretical standpoint, if we can guarantee certain
properties of the inexpensive distance metric, we can show
that the original, accurate clustering solution can still be
recovered with the canopies approach. In other words, if
the inexpensive clustering does not exclude the solution for
the expensive clustering, then we will not lose any clustering
accuracy. In practice, we have actually found small accuracy
increases due to the combined usage of two distance metrics.

Clustering based on canopies can be applied to many differ-
ent underlying clustering algorithms, including Greedy Ag-
glomerative Clustering, K-means, and Expectation-Maxim-
ization.

This paper presents experimental results in which we apply
the canopies method with Greedy Agglomerative Clustering
to the problem of clustering bibliographic citations from the
reference sections of computer science research papers. The
Cora research paper search engine [11] has gathered over a
million such references referring to about a hundred thou-
sand unique papers; each reference is a text segment exist-
ing in a vocabulary of about hundred thousand dimensions.
Multiple citations to the same paper differ in many ways,
particularly in the way author, editor and journal names are
abbreviated, formatted and ordered. Our goal is to cluster
these citations into sets that each refer to the same article.
Measuring accuracy on a hand-clustered subset consisting of
about 2000 references, we find that the canopies approach
speeds the clustering by an order of magnitude while also
providing a modest improvement in clustering accuracy. On
the full data set we expect the speedup to be five orders of
magnitude.

2. EFFICIENT CLUSTERING
WITH CANOPIES

The key idea of the canopy algorithm is that one can greatly
reduce the number of distance computations required for
clustering by first cheaply partitioning the data into over-
lapping subsets, and then only measuring distances among
pairs of data points that belong to a common subset.

The canopies technique thus uses two different sources of
information to cluster items: a cheap and approximate sim-
ilarity measure (e.g., for household address, the proportion
of words in common between two address) and a more ex-
pensive and accurate similarity measure (e.g., detailed field-
by-field string edit distance measured with tuned transfor-
mation costs and dynamic programming).

We divide the clustering process into two stages. In the first
stage we use the cheap distance measure in order to cre-
ate some number of overlapping subsets, called “canopies.”
A canopy is simply a subset of the elements (i.e. data
points or items) that, according to the approximate simi-
larity measure, are within some distance threshold from a
central point. Significantly, an element may appear under
more than one canopy, and every element must appear in at
least one canopy. Canopies are created with the intention
that points not appearing in any common canopy are far
enough apart that they could not possibly be in the same
cluster. Since the distance measure used to create canopies
is approximate, there may not be a guarantee of this prop-
erty, but by allowing canopies to overlap with each other, by
choosing a large enough distance threshold, and by under-
standing the properties of the approximate distance mea-
sure, we can have a guarantee in some cases.

The circles with solid outlines in Figure 1 show an example
of overlapping canopies that cover a data set. The method
by which canopies such as these may be created is described
in the next subsection.

In the second stage, we execute some traditional cluster-
ing algorithm, such as Greedy Agglomerative Clustering or
K-means using the accurate distance measure, but with the
restriction that we do not calculate the distance between two
points that never appear in the same canopy, i.e. we assume
their distance to be infinite. For example, if all items are
trivially placed into a single canopy, then the second round
of clustering degenerates to traditional, unconstrained clus-
tering with an expensive distance metric. If, however, the
canopies are not too large and do not overlap too much,
then a large number of expensive distance measurements
will be avoided, and the amount of computation required
for clustering will be greatly reduced. Furthermore, if the
constraints on the clustering imposed by the canopies still in-
clude the traditional clustering solution among the possibil-
ities, then the canopies procedure may not lose any cluster-
ing accuracy, while still increasing computational efficiency
significantly.

We can state more formally the conditions under which the
canopies procedure will perfectly preserve the results of tra-
ditional clustering. If the underlying traditional clusterer is
K-means, Expectation-Maximization or Greedy Agglomer-
ative Clustering in which distance to a cluster is measured
to the centroid of the cluster, then clustering accuracy will
be preserved exactly when:

For every traditional cluster, there exists a canopy
such that all elements of the cluster are in the
canopy.

If instead we perform Greedy Agglomerative Clustering clus-
tering in which distance to a cluster is measure to the closest
point in the cluster, then clustering accuracy will be pre-
served exactly when:

For every cluster, there exists a set of canopies
such that the elements of the cluster “connect”
the canopies.

A

C

E

B

D

Figure 1: An example of four data clusters and the
canopies that cover them. Points belonging to the
same cluster are colored in the same shade of gray.
The canopies were created by the method outlined
in section 2.1. Point A was selected at random
and forms a canopy consisting of all points within
the outer (solid) threshold. Points inside the in-
ner (dashed) threshold are excluded from being the
center of, and forming new canopies. Canopies for
B, C, D, and E were formed similarly to A. Note
that the optimality condition holds: for each clus-
ter there exists at least one canopy that completely
contains that cluster. Note also that while there is
some overlap, there are many points excluded by
each canopy. Expensive distance measurements will
only be made between pairs of points in the same
canopies, far fewer than all possible pairs in the data
set.

We have found in practice that it is not difficult to create in-
expensive distance measures that nearly always satisfy these
“canopy properties.”

2.1 Creating Canopies
In most cases, a user of the canopies technique will be able to
leverage domain-specific features in order to design a cheap
distance metric and efficiently create canopies using the met-
ric. For example, if the data consist of a large number of
hospital patient records including diagnoses, treatments and
payment histories, a cheap measure of similarity between the
patients might be “1” if they have a diagnosis in common
and “0” if they do not. In this case canopy creation is triv-
ial: people with a common diagnosis fall in the same canopy.
(More sophisticated versions could take account of the hier-
archical structure of diagnoses such as ICD9 codes, or could
also include secondary diagnoses.) Note, however, that peo-
ple with multiple diagnoses will fall into multiple canopies
and thus the canopies will overlap.

Often one or a small number of features suffice to build
canopies, even if the items being clustered (e.g. the patients)
have thousands of features. For example, bibliographic ci-

tations might be clustered with a cheap similarity metric
which only looks at the last names of the authors and the
year of publication, even though the whole text of the ref-
erence and the article are available.

At other times, especially when the individual features are
noisy, one may still want to use all of the many features of
an item. The following section describes a distance metric
and method of creating canopies that often provides good
performance in such cases. For concreteness, we consider
the case in which documents are the items and words in
the document are the features; the method is also broadly
applicable to other problems with similar structure.

2.1.1 A Cheap Distance Metric
All the very fast distance metrics for text used by search
engines are based on the inverted index. An inverted index
is a sparse matrix representation in which, for each word,
we can directly access the list of documents containing that
word. When we want to find all documents close to a given
query, we need not explicitly measure the distance to all
documents in the collection, but need only examine the list
of documents associated with each word in the query. The
great majority of the documents, which have no words in
common with the query, need never be considered. Thus we
can use an inverted index to efficiently calculate a distance
metric that is based on the number of words two documents
have in common.

Given the above distance metric, one can create canopies
as follows. Start with a list of the data points in any order,
and with two distance thresholds, T1 and T2, where T1 > T2.
(These thresholds can be set by the user, or, as in our ex-
periments, selected by cross-validation.) Pick a point off
the list and approximately measure its distance to all other
points. (This is extremely cheap with an inverted index.)
Put all points that are within distance threshold T1 into a
canopy. Remove from the list all points that are within dis-
tance threshold T2. Repeat until the list is empty. Figure 1
shows some canopies that were created by this procedure.

The idea of an inverted index can also be applied to high-
dimensional real-valued data. Each dimension would be dis-
cretized into some number of bins, each containing a bal-
anced number of data points. Then each data point is ef-
fectively turned into a “document” containing “words” con-
sisting of the unique bin identifiers for each dimension of the
point. If one is worried about edge effects at the boundaries
between bins, we can include in a data point’s document the
identifiers not only of the bin in which the point is found,
but also the bins on either side. Then, as above, a cheap
distance measure can be based on the the number of bin
identifiers the two points have in common. A similar proce-
dure has been used previously with success [8].

2.2 Canopies with Greedy Agglomerative
Clustering

Greedy Agglomerative Clustering (GAC) is a common clus-
tering technique used to group items together based on sim-
ilarity. In standard greedy agglomerative clustering, we are
given as input a set of items and a means of computing the
distance (or similarity) between any of the pairs of items.

The items are then combined into clusters by successively
combining the two closest clusters until one has reduced the
number of clusters to a target number.

We use a standard implementation of greedy agglomerative
clustering (GAC): Initialize each element to be a cluster of
size one, compute the distances between all pairs of clusters,
sort the distances from smallest to largest, and then repeat-
edly merge the two clusters which are closest together until
one is left with the desired number of clusters.

In the standard GAC implementation, we need to apply the
distance function O(n2) times to calculate all pair-wise dis-
tances between items. A canopies-based implementation of
GAC can drastically reduce this required number of com-
parisons.

Using a cheap, approximate distance measure overlapping
canopies are created. When the canopies property holds,
we are guaranteed that any two points that do not share
a canopy will not fall into the same cluster. Thus, we do
not need to calculate the distances between these pairs of
points. Equivalently, we can initialize all distances to in-
finity and only replace pairwise distances when two items
fall into the same canopy. As discussed in Section 2.4, this
vastly reduces the required number of distance calculations
for greedy agglomerative clustering.

2.3 Canopies with Expectation-Maximization
Clustering

One can also use the canopies idea to speed up prototype-
based clustering methods like K-means and Expectation-
Maximization (EM). In general, neither K-means nor EM
specify how many clusters to use. The canopies technique
does not help this choice.

As before, the canopies reduce the number of expensive dis-
tance comparisons that need to be performed. We create the
canopies as before. We now describe three different meth-
ods of using canopies with prototype-based clustering tech-
niques.

Method 1: In this approach, prototypes (our estimates of
the cluster centroids) are associated with the canopies that
contain them, and the prototypes are only influenced by
data that are inside their associated canopies.

After creating the canopies, we decide how many prototypes
will be created for each canopy. This could be done, for
example, using the number of data points in a canopy and
AIC or BIC [1]—where points that occur in more than one
canopy are counted fractionally. Then we place prototypes
into each canopy. This initial placement can be random, as
long as it is within the canopy in question, as determined
by the inexpensive distance metric.

Then, instead of calculating the distance from each proto-
type to every point (as is traditional, a O(nk) operation), the
E-step instead calculates the distance from each prototype
to a much smaller number of points. For each prototype, we
find the canopies that contain it (using the cheap distance
metric), and only calculate distances (using the expensive
distance metric) from that prototype to points within those

Prototypes moved by Number of prototypes
1 only points in same constant, initialized

canopy as prototype per canopy
2 points in same constant, initialized

canopy as prototype over whole data set
plus all others summarized
by canopy centers

3 only points in same initialized per canopy,
canopy as prototype but created and destroyed

dynamically

Table 1: A summary of the three different methods
of combining canopies and EM.

canopies.

Note that by this procedure prototypes may move across
canopy boundaries when canopies overlap. Prototypes may
move to cover the data in the overlapping region, and then
move entirely into another canopy in order to cover data
there.

The canopy-modified EM algorithm behaves very similarly
to traditional EM, with the slight difference that points out-
side the canopy have no influence on points in the canopy,
rather than a minute influence. If the canopy property holds,
and points in the same cluster fall in the same canopy, then
the canopy-modified EM will almost always converge to the
same maximum in likelihood as the traditional EM. In fact,
the difference in each iterative step (apart from the enor-
mous computational savings of computing fewer terms) will
be negligible since points outside the canopy will have ex-
ponentially small influence.

K-means gives not just similar results for canopies and the
traditional setting, but exactly identical clusters. In K-
means each data point is assigned to a single prototype.
As long as the cheap and expensive distance metrics are
sufficiently similar that the nearest prototype (as calculated
by the expensive distance metric) is within the boundaries
of the canopies that contain that data point (as calculated
with the cheap distance metric), then the same prototype
will always win.

Method 2: We might like to have a version of the canopies
method that, instead of forcing us to pick a number of pro-
totypes for each canopy separately, allows us to select the
number of prototypes that will cover the whole data set.
Method 2 makes this possible. As before, prototypes are as-
sociated with canopies, and are only influenced by individual
data points that are inside their canopies. However, in this
method, prototypes are influenced by all the other data too,
but data points outside the prototype’s associated canopy
are represented simply by the mean of their canopies. In
this respect, Method 2 is identical to Omohundro’s balltrees
[17]. Method 2 differs, however, in that the canopies are cre-
ated highly efficiently, using a cheap distance metric. Not
only is it more computationally efficient to compute the dis-
tance between two points using the cheap distance metric,
but the use of inverted indices avoids completely computing
the distance to many points.

Method 3: There are many existing traditional methods

for dynamically determining the number of prototypes (e.g.
[18]). Techniques for creating and destroying prototypes are
particularly attractive when thinking about Method 1. Here
we have the simplicity of completely ignoring all data points
outside a prototype’s associated cluster, with the problem,
however, that we may have too many or too few prototypes
within the canopy. In Method 3, as in Method 1, prototypes
are associated with canopies and only see points within their
canopy. Here, however, we use techniques that create (and
possibly destroy) prototypes dynamically during clustering.
We avoid creating multiple prototypes to cover points that
fall into more than one canopy by invoking a “conservation
of mass” principle for points. In practice, this means that
the contribution of each point is divided among the canopies,
as falling out naturally from the normalization in the E-step:
as is traditional, membership to a prototype is determined
by dividing the inverse distance to the prototype by the
sum of inverse distances to all the prototypes to which its
distance was measured, even if some of those prototypes fall
in different canopies.

2.4 Computational Complexity
We can formally quantify the computational savings of the
canopies technique. The technique has two components: a
relatively fast step where the canopies are created, followed
by a relatively slow clustering process. If we create canopies
using an inverted index, we do not need to perform even the
complete pair-wise distance comparisons. If we assume that
each document has w words, and these words are evenly
distributed across the vocabulary V , then we can compare
a document to n other documents in O(nw2/|V |). This
canopy creation cost is typically insignificant in comparison
to the more detailed clustering phase.

Assume that we have n data points that originated from
k clusters. For concreteness, first consider the Greedy Ag-
glomerative Clustering algorithm. Clustering without canop-
ies requires calculating the distance between all pairs of
points, an O(n2) operation. This is the dominating com-
plexity term in GAC clustering. Now consider how this
is reduced by using canopies. Assume that there are c
canopies and that each data point on average falls into f
canopies. This factor f estimates the amount to which the
canopies overlap with each other. Now, in an optimistic
scenario where each canopy is of equal size, there will be
roughly fn/c data points per canopy. When clustering with
canopies we need only calculate the distances between pairs
of points within the same canopy. This requires at most
O(c(fn/c)2) = O(f2n2/c) distance measurements. (This is
probably an over-estimate, as the same points tend to fall
into multiple canopies together, and we only need to cal-
culate their distances once.) This represents a reduction in
complexity of f2/c. In general, c will be much larger than f .
Given a typical case in which n = 1, 000, 000, k = 10, 000,
c = 1, 000, and f is a small constant, the canopies technique
reduces computation by a factor of 1, 000.

In the case of K-means or Expectation-Maximization, clus-
tering without canopies requires O(nk) distance compar-
isons per iteration of clustering (finding the distance be-
tween each data point and each cluster prototype). Con-
sider the EM method 1, where each cluster belongs to one
or more canopy. Assume that clusters have roughly the same

Fahlman, Scott & Lebiere, Christian (1989). The cascade-
correlation learning architecture. In Touretzky, D., editor,
Advances in Neural Information Processing Systems (volume 2),
(pp. 524-532), San Mateo, CA. Morgan Kaufmann.

Fahlman, S.E. and Lebiere, C., “The Cascade Correlation
Learning Architecture,” NIPS, Vol. 2, pp. 524-532, Morgan
Kaufmann, 1990.

Fahlmann, S. E. and Lebiere, C. (1989). The cascade-
correlation learning architecture. In Advances in Neural In-
formation Processing Systems 2 (NIPS-2), Denver, Colorado.

Figure 2: Three sample citations to the same paper.
Note the different layout formats, and the mistakes
in spelling that make it difficult to identify these as
citations to the same paper.

overlap factor f as data points do. Then, each cluster needs
to compare itself to the fn/c points in f different canopies.
For all clusters, this is O(nkf2/c) per iteration, yielding the
same complexity reduction as seen for GAC.

In the experimental results described in a following section,
c is on the order of 1,000, so the savings are significant. In
an industrial sized merge-purge problem, far more canopies
would be used, and full pair-wise distance calculations would
not at all be feasible.

3. CLUSTERING TEXTUAL
BIBLIOGRAPHIC REFERENCES

In this section we provide empirical evidence that using
canopies for clustering can increase computational efficiency
by an order of magnitude without losing any clustering ac-
curacy. We demonstrate these results in the domain of bib-
liographic references.

The Cora web site (www.cora.whizbang.com) provides a search
interface to over 50,000 computer science research papers
[11]. As part of the site’s functionality, we provide an inter-
face for traversing the citation graph. That is, for a given
paper, we provide links to all other papers it references, and
links to all other papers that reference it, in the respective
bibliography section of each paper. To provide this interface
to the data, it is necessary to recognize when two citations
from different papers are referencing the same third paper,
even though the text of the citations may differ. For exam-
ple, one paper may abbreviate first author names, while the
second may include them. Some typical citations are shown
in Figure 2. Note that different styles of reference format-
ting and abbreviation, as well as outright citation mistakes,
make this a difficult task to automate. We pose this as a
clustering problem, where the task is to take all the cita-
tions from all papers in the collection, and cluster them so
that each cluster contains all and only citations to a sin-
gle paper. Since the Cora collection contains over a million
bibliographic entries, it is necessary to perform this cluster-
ing efficiently. Using straightforward GAC would take more
than one CPU year, assuming unlimited memory. If we
estimate the total number of canopies and average canopy
membership from labeled dataset used below, the canopies
approach will provide a speedup of five orders of magnitude,
reducing the clustering time to a couple hours.

3.1 Distance Metrics for Citations
The basic clustering approach we use is Greedy Agglom-
erative Clustering. In order to perform clustering in this
domain, we must provide a distance metric for the space
of bibliographic citations. A powerful choice for measur-
ing the distance between strings is string edit distance, as
calculated by dynamic programming using different costs
associated with various transformation rules [21].

Since we know that that the strings are references, we choose
transformation cost parameters specific to this domain. There
are different transformation costs for (1) deleting a charac-
ter, (2) deleting a character where the last operation was
also a deletion, (3) deleting a period, (4) deleting a char-
acter in one string when the other string is currently at a
period, (5) substituting one character for another charac-
ter, (6) substituting a non-alphabetic character for another
non-alphabetic character, and (7) deleting a non-alphabetic
character.

One difficulty with applying string edit distances to the do-
main of citations is that one cannot easily represent field
transpositions (e.g. placing the year after the author instead
of at the end of the citation) as an atomic cost operation in
the dynamic programming. We expect there to be strong
similarity between the individual fields of citations to the
same paper, but do not expect strong correlations in the
ordering of the fields. Thus, we define our distance metric
to be the weighted average of the distances of each of the
fields occurring in the citations. The fields of each citation
are found automatically using a hidden Markov model [11];
this field extraction process is not described in this paper.

The string edit distance calculations are relatively expen-
sive, since a dynamic program must be solved to account
for possible insertions, deletions, and transpositions. Doing
a full clustering for the Cora dataset would involve solving
over one trillion of these dynamic programs, and is clearly
untenable. To make this feasible, we use the canopies ap-
proach with a two-pass process, first using an inexpensive
distance metric to limit the number of string edit distances
we must compute.

As described in section 2.1.1, we use an inverted index and
the method of two thresholds to inexpensively create the
canopies. Specifically, the distance between two citations is
measured by considering each citation as a short document,
and measuring similarity using the text search engine Archer
[12]. Similarity between two citations is the standard TFIDF
cosine-similarity from information retrieval [19]. This coarse
metric allows approximate overlapping canopies to be cre-
ated very quickly.

3.2 Dataset, Protocol and Evaluation Metrics
In order to evaluate both the speed and accuracy of our
clustering algorithms, we take a subset of the Cora citation
data and hand-label it according to its correct clustering.
Our labeled data consist of all citations from our collec-
tion to papers authored by either Michael Kearns, Robert
Schapire or Yoav Freund. We identify these papers by gen-
erous substring matching on the author names, and then
prune out papers not authored by one of our subjects. In all,
this comprises 1916 citations to 121 distinct papers. About

one-quarter of the papers have only one or two reference to
them; several papers have many references to them. The
most popular paper is cited 108 times.

To cluster the citations we use the two-thresholds canopy
creation and then nearest-neighbor Greedy Agglomerative
Clustering with the string edit distances on the extracted
fields as the expensive distance metric. We use only four
fields of the citation for the string edit distance calculation:
author, title, date, and venue (e.g. journal name or confer-
ence name). All fields are lower-cased. Dates are reduced to
a four-digit year. Titles and venues are truncated at 60 char-
acters. Author fields are simplified by automatically abbre-
viating the first name of the first author. The HMM makes
a number of errors, which build on the natural variation in
citations. The worst of these are fixed in a pre-processing
stage.

There are three tunable parameters for the canopies clus-
tering: the tight and loose thresholds for the cheap distance
metric, and the stopping point for the Greedy Agglomer-
ative Clustering. We tuned these three parameters on a
separate, similarly sized validation dataset for the authors
Scott Fahlman, Dennis Kibler and Paul Utgoff. The string
edit costs for the different operations were set to hand-coded
values. Learning and tuning these string edit weights auto-
matically is an area of ongoing research.

In analyzing the results, we present several metrics for eval-
uating the quality of the clustering. All our metrics are
defined in terms of all pairs of citations. Thus, the error
rate is the fraction of pairs of citations that are correctly
in the same cluster (if they reference the same paper) or in
different clusters (if they reference different papers). Since
the vast majority of pairs of citations fall into different clus-
ters, error is not the most informative metric. Thus, we
consider the precision, recall and the F1 metric that do not
credit an algorithm for correctly placing citations into dif-
ferent clusters. These metrics are standard measures used
in information retrieval. Precision is the fraction of correct
predictions among all pairs of citations predicted to fall in
the same cluster. Recall is the fraction of correct predictions
among all pairs of citations that truly fall in the same clus-
ter. F1 is the harmonic average of precision and recall. It is
a single summary statistic that does not credit an algorithm
for correctly placing the overwhelming number of pairs into
different clusters.

We use a series of four increasingly sophisticated methods
for comparing the computational efficiency and clustering
accuracy of using the canopy framework. The most naive
baseline is to simply place each citation into its own cluster.
This represents the straw-man performance if no computa-
tion is used for the clustering. As a second baseline, we
create by hand a regular expression that identifies the last
name of the first author, and the year of each citation. Each
citation is placed into the same cluster as any other paper
published in the same year by an author with the same last
name. This baseline represents a bibliographic map done
with a large amount of manual tuning, but without an au-
tomatic clustering algorithm. As a third comparison, we use
the current grouping algorithm used by Cora [11]. This is a
word-matching algorithm that is similar to the two thresh-

Method F1 Error Precision Recall Minutes
Canopies 0.838 0.75% 0.735 0.976 7.65

Complete, Expensive 0.835 0.76% 0.737 0.965 134.09
Existing Cora 0.784 1.03% 0.673 0.939 0.03

Author/Year Baseline 0.697 1.60% 0.559 0.926 0.03
Naive Baseline — 1.99% 1.000 0.000 —

Table 2: The error and time costs of different methods of clustering references. The naive baseline places
each citation in its own cluster. The Author/Year baseline clusters each citation based on the year and first
author of the citation, identified by hand-built regular expressions. The existing Cora method is a word
matching based technique. Note that the canopy clustering is much quicker, and slightly more accurate than
the complete clustering. Time is measured in minutes for the Perl implementations (except the existing
Cora, which is implemented in C).

Loose Threshold
0.95 0.85 0.75 0.65 0.55

0.95 0.566 (7.15) 0.667 (9.13) 0.835 (10.72) 0.836 (18.77) 0.836 (35.53)
Tight 0.85 — 0.713 (5.85) 0.833 (8.12) 0.835 (10.67) 0.836 (24.10)

Threshold 0.75 — — 0.840 (5.50) 0.836 (8.80) 0.836 (24.17)
0.65 — — — 0.838 (7.65) 0.836 (15.97)
0.55 — — — — 0.836 (15.93)

Table 3: F1 results created by varying the parameters for the tight and loose thresholds during canopy
creation. The number in parenthesis is the computation time in minutes for the clustering. As we decrease
the loose threshold and increase the tight threshold, computation time increases as we are required to calculate
more pairwise expensive distances. The parameter setting chosen by our cross-validation is indicated in bold.

olds matching, except that (1) it uses only the titles, authors
and years from each citation, and (2) it creates a clustering
that is non-overlapping. Our final method is to perform
the complete hierarchical agglomerative clustering with the
string edit distance metric. This represents a very expensive
baseline, but one that should perform accurately. All meth-
ods are implemented in Perl, except for the existing Cora
algorithm, which is implemented in C. Experiments are run
on a 300 MHz Pentium-II with enough memory that there
is no paging activity.

3.3 Experimental Results
Table 3.2 presents a summary of the experimental results
with the canopy clustering, where the threshold parameters
and the number of clusters are tuned on the separate vali-
dation set. The canopy clustering algorithm achieves an F1
of 0.838 in only 7.65 minutes. In comparison, the complete
clustering takes over two hours, and has slightly worse error.
Note that this represents more than an order of magnitude
reduction in computation time.

Although the original motivation for the algorithm was com-
putation time and size, the canopies approach also provides
a slightly more accurate clustering algorithm. Our hypoth-
esis about this somewhat surprising result is that the two
levels of clustering (the loose canopies and the strict string
edit) work together in some sense. The cheap distance met-
ric produces errors mostly independent from those of the
expensive distance metric. This allows the cheap canopy
partitioning to remove some errors that the expensive clus-
tering would have made.

The other comparison techniques all give worse clustering

solutions than those using canopies. The error of the base-
line naive approach is more than twice that of either cluster-
ing approach. Using either the author/year or the existing
Cora techniques improves upon the baseline accuracy, but
is still significantly worse than either clustering technique.

In performing a canopy clustering, two sets of parameters
need to be chosen: the values for the two canopy thresh-
olds, and the number of final clusters. Table 3 shows ex-
perimental results that vary the values of the tight and
the loose thresholds. The number of comparisons done by
the expensive clustering algorithms varies when the thresh-
olds change, because the number and size of the canopies
changes. In general as the tight similarity threshold in-
creases and the loose threshold decreases, more distance
measurements are required. For example, with {Tight=0.95,
Loose=0.55} 261,072 expensive distance calculations are re-
quired. With {Tight=0.75, Loose=0.75}, the best perfor-
mance seen, only 41,142 distances are required, nearly six
times less. This means that the canopy creation is finding
pairs that belong together, even if their distances are not
so close. As a comparison, doing the complete clustering,
without canopies, requires 1,834,570 expensive distance cal-
culations, and the parameters picked by the validation set,
{Tight=0.65, Loose=0.65}, required 41,141. With larger
datasets, this difference becomes even more pronounced, as
the number of distance calculations required by the full clus-
tering grows by the square of the number of items.

Table 4 shows how the error of the canopy clustering varies
when the final number of clusters is changed. Note that
having the correct number of clusters (121), or slightly more,
provides the best accuracy. Detailed error analysis shows
that most of our error (85% of it) comes from citations that

Clusters Distance F1 Precision Recall
260 4 0.789 0.809 0.770
189 6 0.807 0.752 0.871
143 8 0.833 0.746 0.942
129 10 0.837 0.742 0.960
121 12 0.839 0.742 0.965
110 14 0.838 0.735 0.975
105 16 0.812 0.694 0.980
100 18 0.791 0.663 0.981
95 20 0.756 0.614 0.983
91 22 0.752 0.609 0.984
90 24 0.752 0.609 0.984

Table 4: The accuracy of the clustering as we vary
the final number of clusters. Note that the best
F1 score occurs near the correct number of clusters
(121). As we allow more clusters, the precision in-
creases, while the recall decreases.

should be in different clusters, but are predicted to be in
the same cluster. Canopy clustering still make three times as
many mistakes falsely putting references in the same cluster,
rather than falsely putting references in different clusters.

4. RELATED WORK
Many researchers and practitioners have recognized the desir-
ability—and the difficulty—of grouping similar items in large
data sets into clustering. The methods used tend to fall into
two categories: database methods for finding near duplicate
records and clustering algorithms.

The extensive literature on clustering algorithms goes back
many years. (See e.g. [2].) Almost all of the methods use
some single method of computing similarity between pairs
of items. These items are then either greedily or itera-
tively clustered based on their similarity. Standard cluster-
ing methods include: greedy agglomerative methods, greedy
divisive methods, and iterative methods such as K-means
clustering. More recent variants on these classical clustering
methods use (iterative) EM methods to estimate parameters
in formal statistical models or use other forms of overlapping
clusters to improve precision [22]. They may also represent
subsets of the data by single points [23] or use incremen-
tal clustering to improve clustering speed on large data sets
[20]. The EM and statistical methods tend to be slow, while
the one-pass incremental methods tend to be less accurate.

The canopies method described here differs from the above
methods in that is makes use of two different similarity mea-
sures. By using the cruder similarity measure to quickly
form canopies and then using the more refined similarity
measure to form smaller clusters, both high speed and high
precision are obtained.

Closely related to the above methods are a large number
of extensions to and variants on KD-trees [5] such as multi-
resolution KD-trees [15], which recursively partition the data
into subgroups. Almost all of these methods suffer from do-
ing hard partitions, where each item must be on a single side
of each partition. Cheap, approximate similarity measures
thus cannot be used, since if an item is put on the wrong

side of a partition there is no way to later correct the error.
KD-tree methods also typically scale poorly for items with
large numbers of attributes, as splits are generally made on
a single attribute. The balltrees method [17] does use over-
lapping regions, but still assumes that a tree structure can
be made. Like the other KD-tree methods, it does not make
use of the two (expensive and cheap) similarity measures
upon which the canopies method is based.

A separate line of work on clustering comes from users of
databases. The record linkage [16, 4, 10] or merge–purge [7]
problem occurs when a company purchases multiple data-
bases, such as multiple mailing lists, and wishes to deter-
mine which records are near duplicates (i.e. refer to the
same person) so that the lists can be merged and the du-
plicates purged. This is a special case of clustering problem
addressed above, in which the clusters are small and items in
each cluster are typically quite distinct from items in other
clusters.

In one approach to the merge–purge problem, multiple dif-
ferent keys are used to determine “duplicate” records, and
the results of those different clusters are combined [7]. For
example, a database is created by combining multiple data-
bases which may contain duplicate or near duplicate records.
This composite database is sorted separately on multiple
keys (address, social security number, etc.). For each sort-
ing, items within a small window of each other are checked
to see if they are near duplicates, and if so combined. In
a closely related approach, the database is sorted using an
application-specific key (e.g. last name) and then a more ex-
pensive similarity is computed between items that are close
in the sorted list [13, 14]. Like the other merge–purge re-
searchers, Monge and Elkan assume that an exact match in
a single field establishes whether two items are duplicates;
our canopies algorithm allows for more complex compar-
isons, such as are used in clustering methods like K-means,
and is more tolerant of noise. Explicitly assigning items to
multiple canopies allows rigorous methods such as EM to
be used within each canopy, and clear computational cost
estimates to be made.

Hylton [9] comes even closer to our canopies algorithm. He
proposes a method of clustering references to published ar-
ticles which uses a two step algorithm. In the first step,
for each item (i.e. for each reference) a pool of potentially
matching items is selected by doing three full-text searches,
where the query for each search consists of one of the au-
thors’ last names and two words from the title, selected at
random. In the second step, all items in each pool are com-
pared against the item used to generate the pool, using a
string matching algorithm. He then forces all items which
have been grouped together into a single group. For exam-
ple, if items A and B were grouped together based on the
queries about A and items B and C were grouped together
in the queries about C, then A, B, and C would end up in
the same group.

Hylton’s method follows the spirit of canopies in that it does
an initial rough grouping which is not a unique partition,
followed by a more fine-grained comparison of items within
each group. It differs from canopies in that he forms one
group (“pool”, in his terms) for every single item. (In our

terms, he requires the number of canopies to equal the num-
ber of items.) This is very expensive. Also, because each
pool is centered on a single item, Hylton does not support
the use of arbitrary clustering methods for the fine-grained
clustering portion of the algorithm.

Giles et al. [6] also study the domain of clustering cita-
tions. They present experiments with several different word-
matching techniques and one string edit based technique.
They find that the best-performing method is a word match-
ing algorithm similar to the Cora technique used in Sec-
tion 3, augmented to use field extraction information and
bigrams. Their lesser-performing string edit distance met-
ric is similar to ours, but the clustering algorithm they use
with this metric is not greedy agglomerative clustering. In-
stead, they use an iterative match-and-remove algorithm to
perform the clustering.

5. CONCLUSIONS
Clustering large data sets is a ubiquitous task. Astronomers
work to classify stars into similar sets based on their images.
Search engines on the web seek to group together similar
documents based on the words they contain or based on
their citations. Marketers seek clusters of similar shoppers
based on their purchase history and demographics. Shop-
bots seek to identify similar products based on the product
descriptions. Biologists seek to group DNA sequences based
on the proteins they code for or to group proteins based on
their function in cells.

In all of these cases, the objects are characterized by large
feature vectors (the images, text, or DNA sequences). Fur-
thermore, in each case there are inexpensive measures of
similarity that one can compute (e.g. number of words in
common), and more expensive and accurate measures (e.g.
based on parse trees and part of speech tagging for text or
string-edit distances for DNA). Given large data sets with
hundreds of thousands or millions of entries, computing all
pairwise similarities between objects is often intractable,
and more efficient methods are called for. Also, increas-
ingly, people are trying to fit complex models such as mix-
ture distributions or HMMs to these large data sets. Com-
puting global models where all observations can affect all
parameters is again intractable, and methods for grouping
observations (similarly to the grouping of objects above) are
needed. Canopies provide a principled approach to all these
problems.

In this paper we have focused on reference matching, a par-
ticular class of problems that arise when one has many dif-
ferent descriptions for each of many different objects, and
wishes to know (1) which descriptions refer to the same ob-
ject, and (2) what the best description of that object is. We
present experimental results for the domain of bibliographic
citation matching. Another important instance of this class
is the merge-purge problem. Companies often purchase and
merge multiple mailing lists. The resulting list then has
multiple entries for each household. Even for a single per-
son, the name and address in each version on the list may
differ slightly, with middle initials present or absent, words
abbreviated or expanded, zip codes present or absent. This
problem of merging large mailing lists and eliminating dupli-
cates, becomes even more complex for householding, where

one wishes to collapse the records of multiple people who
live in the same household.

When information is extracted from the web, the reference
matching problem is even more severe. One can search the
web and extract descriptions of products and their attributes
(e.g. different models of Palm Pilots and their weight, mem-
ory, size, etc.) or descriptions of companies and what indus-
tries and countries in which they have business. This in-
formation extraction is error-prone, but redundant—many
different sources sell the same product. Again, the goal is to
cluster descriptions into sets that describe the same product
or company, and then to determine a canonical description.

Because of the the large number of items, feature dimen-
sions and clusters, carefully comparing every item against
every other item is intractable in all the above cases. For-
tunately, there are often cheap and approximate means to
group items into overlapping subsets we call “canopies”, so
that accurate, expensive comparisons can be made between
items in the same canopy. Canopies, ideally, have the prop-
erty that all items in any true cluster fall in the same canopy;
this guarantees that no accuracy is lost by restricting com-
parisons of items to those in the same canopy.

The canopy approach is widely applicable. The cheap mea-
sures can be binning, comparison of a few attributes of a
complex record, or finding similarity using an inverted index.
The expensive measure can use detailed similarity measure-
ments such as string edit distance computed with dynamic
programming. The clustering can be greedy agglomerative,
K-nearest neighbor, K-means, or any of a wide variety of
EM methods. The commonality across the methods is the
creation of canopies using the cheap measure so that the use
of the expensive measure is drastically reduced.

We have demonstrated the success of the canopies approach
on a reference matching problem from the domain of bibli-
ographic citations. Here we reduced computation time by
more than an order of magnitude while also slightly increas-
ing accuracy. In ongoing work we are running the canopies
algorithm on the full set of over a million citations and ex-
pect reduced computation of five orders of magnitude, from
more than one CPU year to a couple hours. In future work
we will quantify analytically the correspondence between the
cheap and expensive distance metrics, and we will perform
experiments with EM and with a wider variety of domains,
including data sets with real-valued attributes.

Acknowledgments
Most of this work was done while the first two authors were
at Just Research (www.justresearch.com). Although Cora is
now supported by WhizBang! Labs, it was originally created
at Just Research.

6. REFERENCES
[1] H. Akaike. On entropy maximization principle.

Applications of Statistics, pages 27–41, 1977.

[2] M. R. Anderberg. Cluster Analysis for Application.
Academic Press, 1973.

[3] P. S. Bradley, U. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In Proc. 4th

International Conf. on Knowledge Discovery and Data
Mining (KDD-98). AAAI Press, August 1998.

[4] I. P. Felligi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical Society,
64:1183–1210, 1969.

[5] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An
algorithm for finding best matches in logarithmic
expected time. ACM Tras. Math. Software,
3(3):209–226, 1977.

[6] C. L. Giles, K. D. Bollacker, and S. Lawrence.
CiteSeer: An automatic citation indexing system. In
Digital Libraries 98 – Third ACM Conference on
Digital Libraries, 1998.

[7] M. Hernandez and S. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
1995 ACM SIGMOD, May 1995.

[8] H. Hirsh. Integrating mulitple sources of information
in text classification using whril. In Snowbird Learning
Conference, April 2000.

[9] J. Hylton. Identifying and merging related
bibliographic records. MIT LCS Masters Thesis, 1996.

[10] B. Kilss and W. Alvey, editors. Record Linkage
Techniques—1985, 1985. Statistics of Income Division,
Internal Revenue Service Publication 1299-2-96.
Available from http://www.fcsm.gov/.

[11] A. McCallum, K. Nigam, J. Rennie, and K. Seymore.
Automating the construction of internet portals with
machine learning. Information Retrieval, 2000. To
appear.

[12] A. K. McCallum. Bow: A toolkit for statistical
language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/∼mccallum/bow,
1996.

[13] A. Monge and C. Elkan. The field-matching problem:
algorithm and applications. In Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining, August 1996.

[14] A. Monge and C. Elkan. An efficient
domain-independent algorithm for detecting
approximately duplicate database records. In The
proceedings of the SIGMOD 1997 workshop on data
mining and knowledge discovery, May 1997.

[15] A. Moore. Very fast EM-based mixture model
clustering using multiresolution kd-trees. In Advances
in Neural Information Processing Systems 11, 1999.

[16] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and
A. P. James. Automatic linkage of vital records.
Science, 130:954–959, 1959.

[17] S. Omohundro. Five balltree construction algorithms.
Technical report 89-063, International Computer
Science Institute, Berkeley, California, 1989.

[18] K. Rose. Deterministic annealing for clustering,
compression, classification, regression, and related
optimization problems. Proceedings of the IEEE,
86(11):2210–2239, 1998.

[19] G. Salton and C. Buckley. Term weighting approaches
in automatic text retrieval. Information Processing
and Management, 24(5):513–523, 1988.

[20] M. Sankaran, S. Suresh, M. Wong, and D. Nesamoney.
Method for incremental aggregation of dynamically
increasing database data sets. U.S. Patent 5,794,246,
1998.

[21] D. Sankoff and J. B. Kruskal. Macromolecules: The
Theory and Practice of Sequence Comparison.
Addison-Wesley, 1983.

[22] J. W. Tukey and J. O. Pedersen. Method and
apparatus for information access employing
overlapping clusters. U.S. Patent 5,787,422, 1998.

[23] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An efficient data clustering method for very large
databases. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data,
pages 103–114, 1996.

